THE DESIGN OF FISHERIES STATISTICAL BURVEYS

```
    by
        G.P. Bazigos
FAO-Fishery Statistical Consultant
        Fishery Statistics Unit
    Policy and Planning Service
```

This report has been prepered in the Policy and Planning Service, Department of Pisheries, PaO, for training purposes in the field of fishery etatistics (inland veters). in particular as efuide for the design of largescale fishery statistical *urvey:

Dintripution

FAO Department of Fieheries
PAO Btatistice Division
FaO Recional fiehery officers
FAO African Inland Watere Projects
Other FaO Fishery Projecta
specialised Inetitutes and
Individual geientiats

[^0]
COMTEATS

Pere
1x
PREFACE
$x i$
ACKNOWLEDGEMERTS
PART I: ELEMENTARY COURSE 1

1. IMTRODUCTIOM 1
1.1 The purpose of statistical surveys 1
2. BASIC STATISTICAL CONCEPTS 2
2.1 Population of unita 2
2.2 Population of characteristics 2
3. PLARNING A PRAME SURVEY 3
3.1 Why arame survey? 3
3.2 Planning frame urvey (FS) 3
3.2.1 The length of the shoreline of ake 3
3.2.2 Area atratification 4
3.2.3 The fishing sites (Primary Samping Unite) 4
3.2.4 The Fishing Economic Unit (FEU) 5
3.2.5 The components of FEU 5
3.2.5.1 Fishermen 5
3.2.5.2 Fishing gear 6
3.2.5.3 Fishing craft 6
3.2.6 The field operations of arame Survey (fs) 6
3.2.6.1 The water approach 7
3.2.6.2 The questionneire of aS (vater epproach) 7
3.2.7 The aerial approach 7
3.2.7.1 The questionalire of the urvey (aerial approach) 8
4. THE MEARIMG OF COVERAGE ERRORB 8
4.1 Sources of error (vater approach) 8
4.2 Sources of error (aerial approach) 9
5. PLANHING A COVERAGE CHECK SURVEY 9
5.1 Introduction 9
5.2 The purpose of a CCS 9
5.3 Designing a CCS 20
6. CATCH ASSESSMENT SURVEYS 11
6.1 Introduction 11
6.2 Designing a Catch Assessment Survey (CAB) 11
6.2.1 Area stratification 11
6.2.2 Stratification of the fishing sites vithin the established LZ's 11
6.2.3 Bamping within the selected fishing sites 11
6.3 Types of cas 12
6.4 The reference period of the survey characteristics of CAB 12
6.5 Listing 12
COMTEATS
Page
6.5.1 What to list 12
6.5.2 How to list (general principles) 12
6.6 Intervieving 13
6.6.1 Introduction 13
6.6.2 How to ask the questions 13
6.6.3 Some rules for interviewing 13
6.6.4 How to close the interview 14
6.7 Real measurement 14
6.8 How to select sample of second stage units 14
6.9 Source documents 15
APPEEDIX Ia - THE SOURCE DOCUMENTS OF A PRAME SURVEY (EXAMPLE) 17
APPENDIX Ib - THE SOURCE DOCUMENTS OF A CAS (EXAMPLE) 21
APPERDIX IC - EXERCISES 23
PART II: IRTERMEDIATE COURSE 25
7. IRTRODUCTION 25
T.1 The structure of eishing industry 25
T.2 The division of aishery 25
T. 3 The fishing economic unit (FEU) 25
8. SAMPLIFG SURVEYB IN FIBHERIES STATISTICS 26
8.1 Why Sampling Surveys? 26
8.2 Type of fisheries statistical arveys needed 26
8.2.1 Primary phase (rish production) 26
8.2.1.1 Frame Survey (Fs) 26
8.2.1.2 Catch Assesment Survey (CAS) 26
8.2.1.3 Cost and Earning Survey (CES) 27
8.2.2 Secondery phese (procesing) 27
8.2.2.1 Fish Processing Surver (FPB) 27
8.2.3 Tertiary phase (marketing) 28
8.2.3.1 Fish Marketing Statistical Survey (FMSS) 28
9. THE LABOUR FORCE OF A FISHIMG IMDUBTRY 29
9.1 Determining the lebour force 29
9.1.1 Population of vorking clasees 29
9.1.2 Economically active population 29
9.1.3 Economically active population by induetry 29
9.2 Labour force by ab-sector of the industry 29
9.3 Labour force by type of activity 29
9.4 Fishiag lebour force 30
9.4.1 Meesuring the fishing lebour force 30
9.4.2 Claseification of fishermen 30
CONTR1T8
Pare
10. REBPONSE ERRORS AMD SUPERVISION 31
10.1 Response errors 31
10.1.1 What is meant by response errors 31
10.1.2 The meaning of IRE and TRE 31
10.1.3 Main ources of response errore 31
10.1.3.1 Asking the questions 31
10.1.3.2 Probink 32
10.1.3.3 Recording the answer 32
10.1.3.4 Cheating 32
10.2 Supervision 32
10.2.1 The supervisor's tatk 32
10.2.2 Field aupervision 32
11. JUDGEMENT AND RANDOM SAMPLE 33
11.l Sample versus complete enumeration 33
11.2 Judgement and random sampe 33
11.2.1 Judgement sample 33
12.2.2 Probability ample 33
11.3 Sampling in space and time 34
12. PROCESSIMG THE RESULTS OF A SAMPLIEG SURVEY 34
12.1 Introduction 34
12.2 Editing 34
12.3 Coding 35
12.4 Estimation 35
12.5 Tabulation 35
12.6 Preparation of reports 35
13. QUANTITATIVE RELATIONSHIP BETWEEN BASIC VARIABLES 35
13.1 Introduction 35
13.2 Some important statistical variablea 36
13.3 Quantitative relationship betveen the variables " $X^{\prime \prime}$ and " $Y^{\prime \prime}$ 36
13.3.1 How to prepare acatter diagram 37
13.3.2 The regression equation $y=f(x)$ 37
13.3.3 Estimating the regresion coefficient (a simplemethod) 37
13.3.4 The meaning of the estimated regression coefficient "b" 38
13.4 Quantitative relationship between the variables "U" and "W" 38
13.4.1 Foreulation of the problem 38
13.4.2 The scatter diagran 36
13.4.3 Linear regression equation $u=f(v)$ 39
13.4 .4 The meaning of the entimeted regresion coefficient "b" 39
PART III: TECHMIQUES OF SAMPLIMG (ADVARCED COUREE) 41
14. BASIC IDEAS OF SAMPLIMG 42
14.1 Accuracy and precision 42
14.2 Sources of errors in sample surveys 42
14.2a Bias of estimation 42
14.2b Selection by meent of incomplete sampling framea 42
14.2c Mon-response 43
14.2d Other ources of sampling bias 43
COHTERTS
Page
14.2e Response errors 43
$14.2 f$ Coverage, content errors 45
14.2g Other sources of non-mampling bias 45
14.3 Mean Square Error (MSE) 45
14.4 The appication of confidence intervals to detect the bias (errors of measurement are ignored) 46
14.5 Methods of de-biasing 47
14.6 Costs of Pisheries Statistical Surveys 47
14.7 Integration of sample surveys 51
15. TYPES OF SAMPLE DESIGN 51
15.1 Introduction 51
15.2 Simple Random Sampling (SRS) 51
15.2.1 Estimation of the population mean and total (SRS) 52
15.2.2 Sampling error of y 52
15.2.3 Sampling error of $?$ 55
15.2.4 Bample size 57
15.2.5 Estimation of proportions 57
15.2.6 Estimation for a subgroup 59
15.3 Stratified sampling 61
15.3.1 Estimation of population mean and total 61
15.3.2 Allocation of the total sample to the strata 64
15.3.3 Some properties of the estimetors 69
15.3.4 Eatimation of the sample size 70
15.3.5 Estimation of proportions 71
15.3.6 X-proportional allocation 73
15.3.7 Construction and number of strata 73
15.4 Systematic sampling 73
15.5 Ratio estimation 76
15.5.1 The use of ratio estimation in estimating proportions 78
15.5.2 The use of ratio estimation in stratified random ampling 79
15.6 Difference estimation 80
15.7 Estimation in unequal probability sampling 82
15.8 Two-atage sampling 84
15.8.1 Estimation in equal probability sampling 85
15.8.2 Setiaation in unequal probability sampling 87
15.8.2.1 Self-veigating system 88
15.8.3 Btratified tro-stage sampling 88
25.9 Area sampling 89
16. SUMMATORB, EXPECTATION TECHEIQUES 89
16.1 One umetor 89
16.1.1 Tvo umanote 91
16.2 The use of sumators in statistice 94
16.2.1 The sum of the aumerical values of variables 94
16.3 Expectation techaiques 97
16.3.1 Expectation of some etatistical functiona 98
CORTENTS
Page
APPENDIX IIIA - TABLE OF RANDOM NUMBERS 101
17. A CASE STUDY : THE SAMPLIMG DESIGN OF THE CATCH ASSESSMENT SURVEY (CAS) AT LAKE tANGANYIKA (TAMZANIA) 103
17.1 Purpose of the survey 103
17.2 The sampling method of the aurvey 103
17.3 Sampling in epace 103
17.3.1 Sampling units 103
17.3.2 The sample of Primary Sampling Units (PSU's) 103
17.3.3 The sample of Fishing Economic Unita (FEU's) 106
17.4 Sampling in time 107
17.5 The survey period of the Catch Assessment Survey (CAS) 107
17.6 Survey operations 107
17.6.1 Field personnel 107
17.6.2 Field operations - control 107
17.6.3 Source documente 108
17.6.4 Processing operations 108
APPERDIX IIIb - FORMS USED POR THE CATCH ASSESSMENT SURVEY (CAS) 109
APPENDIX IIIC - WORKING SHEETS OI AND 02 (WS:O1, WS:O2) AND INSTRUCTIONS FOR COMPLETION 115
LIST OF TECHNICAL REPORTS 121

PREPACE

With science becoming more and more important in African ialand vaters. there le - greatly increased need for the Fishery statisticians to be sure that they are uelag scientific methods for obtaining the statistical data so indispensable for suad managenent of a fishery and for planning, marketing and other aspecte of fiahery derelopment.

It is beyond the resources of the African countries essisted by PAO Projecte to collect facts year by year from each fiahing economic unit at the inland rater places in the country. Fortunately, cerefully designed sample urvey cen provide the necessary information for guidelines thet a country needs. at a cost the country may vell afford. This manual erves this purpose. Themanul deale vith the epplication of sampling techniques at elementary (Part I), intermediate (Part II) and adrace level (Part III). Specifically, Part and Part II are ammary of the lectures given in the training courses in African countries on the urvey syeter of lercescale fisheries statistical sample urveysif. In part III, the appilcation of ampling theory in fisheries etatistical surveys is presented.

[^1]
ACKMOHLEDGEMEMTS

The author of manuel must be grateful to almost everyone who has touched the field and I take pleasure in acknowledging my debt to lil persons whose resulta I have dravn upon during the writing of this manul which ie the product of five yeare experience at large African lakes vhere faO Projectice being undertaken.
 Lakes Projects, for the unstinting asiatance given in connection with my asignaente. Appreciation must also co to the Managers of fá Projecte, to my African counterparte in the field and other field staff who made the implementetion of the emple urveys. I hope, succeseful. My thanke also go to my colleague, Mr. L. Butier, fao. Rome. with whom I have bed the good fortune to work end eriticeliy discuse various techaical probleme.

I vould also like to record my thanke to Mr. 8.R. Coppola for hia asiatence in the statistical calculations required for the preparation of the manual and last but not least my thank are due to Miss sheila Campbell for the patience vith which ohe typed the drafts and master copy.

PART I: ELEMENTARY COURSE

1. INTRODUCTION

1.1 The purpose of statistical surveys

In its broadest sense the purpose of astatistical survey" is the collection of information (data) to satisry a definite need. The need to collect data arises in every conceivable sphere of human activity. A fevexamplea are given below from selected fields.

1. Humen population: Most governments nowadays collect information regularly about:
a) Total number of persons
b) Where these persons live (e.g. towne, rural areas, ete)
c) Sex and age of these persons
d) Their education level etc.

These data are needed by the respective countries in order to determine their future needs in terme of food, clothing, echools. recreation facilities, etc.
2. Labour: Since labour ia a key source of production, data are collected on the number of persons engaged in economic activity, the number of hours work, etc. It is also noted that the vages and salaries paid to labour determine the level of living and the demand for goods and services.
3. Industry: Collection of data in the industrial ector is no less important. The number of industrial undertakings and their kind, the number of persons engaged in them, the amount of rav materials consumed, the extent of production of good: are some of the data needed.
4. Agriculture: With rising population, it is becoming more and more important to asesa the agricultural resourcea of a country. Some or the data needed for any planned programme of national development are: land under agriculture, ereas under different crops, areas under pasture and forest, production of rood-graina, fruite, etc., and the number and quality of livestock.
5. Fishing: "... the fishery is the channel between the fish in the inland waters (sea) and the inland market place, and it rescts sensitively to stimuli from both sides; to changea in conditions of supply in the inland waters (sea), and to changes in conditions of demand in the shops ..."

For sound management of fishery and for planning, marketing and other aspects of fishery development, data of fish cateh and of fishing effort involved to obtain the catch are required.

It should be noted that as far as magement of flaheries is concerned, there are usually two problems:

1. There are some fisheries vhich are being intensely exploited and therefore need some mangement or regulation eo that maximin yield from these fisheries could be obtained on continuing besis vithout depletion of these resources taking place.
2. There may be fish stocks, especially beyond the range of current fishing operations, which are either under-exploited or unexploited at present and fisheries may be developed based on them.
3. BABIC 8TATISTICAL COMCEPT8

2.1 Population of unit:

An ageregete of vell defined objects is called "population of units". Examples:

1. Total number of persons in a classroom (unit of the population person in the clasiroom).
2. Total number of fishermen at Lake Victoria (unit of the populetion fisherman at Lake Victoria).
3. Total number of firms in E.A.C. (unit of the population $=$ firm in E.A.C.).

In statistical surveys the definition of "population of units" under study involves:
2. The definition of the unit of the population.
2. The ceographical limitation of the population.
3. The fixing of limits other than merely geographical -.E. in socio-economic urvey at Nairobi area we may decide that people living in ingtitutions like prisons, mental homes and hospitals should be excluded from the survey.

2.2 Population of characteristics

Every unit in a population of units" carries vith it a number of characteristics Examples:

1. In the case of human population every unit in the population carifes with it areat number of characteristics, i.e.

Population of characteristice

ete. ete.
2. In the case of population of induatrial pirme each unit in the population carries with it good number of characteristics. i.e.

etc.etc.
3. In the case of population of fiah each unit in the population carries with it cood number of characteristice. i.e.

It should be noted that in a given "population of characteristica" oome of the characteristics are "quantitative" and others "qualitative".

Quantitative characteristice are measureable (e.g. age is measurable characteristic - How old are youp 35 years. etc.).

Qualitative characteristics are not measurable (e.g. language is a non-measurable characteristic - What language do you speak English, etc.).
3. PLANNING A FRAME SURVEY

3.1 Why arame arvey?

A frame survey is a sort of inventory survey. By this arvey iteme of informatio (data), are collected on number of basic characteristics needed to aseas the ite and structure of fishing industry. Usually the following items of inforamion ere covered by the survey:

1. Size and area distribution of fishing aites.
2. Number of fishing boats (by type).
3. Size and composition of fishing labour force (migretory pattern of the fishermen).
4. Fishing cear owned (by type).
5. Fishermen's cepital goods upply centres.

Also et the same time some information can be collected on fish procesing and marketing.

The results of frame survey can be used, among other thinge, to set up the "sampling frame" of the population we are dealing with. The estabiished sampling frame is mainly used for the selection of the semples of various surveys covering the same population.

3.2 Pleaning a frame survey (PS)

The steps that hould be taken at the process of planing a frame urvey in inland veters can be broadly classified as follove:

3.2.1 The length of the shoreling of ake

The length of the ahoreline of a lake uncer stucy can be considered as one of the characteristice which muet be measured at the design procese of the survey. This information cen be obtained by meking use of the existing "topographicel maps". A topographical mep is a mphich shove the details of the countryside.

Topographical maps may be divided into two groups:

1. 8asll ecale meps
2. Large scale maps

8mall scalemapere those that have acele of miles to the inch, e.g. linch $=$ 2 miles or 1 inch 0 miles. Large scale maps on the other hand, are those which have acale of inches to mile, e.g. 6 inch $=1$ mile. Mote: to measure the direct distance between two points is relatively simple. Mark off the distance on the map with a ruler and then meaure this distance against the linear scale at the base of the map.

It should be noted that in certain lakes (man-made lakes) the leagth of the shoreline of the lake is, among other things, a function of the lake level. As the water level is not constgnt through time neither is the length of the shoreline - thus, the statenent about the length of the shoreline should indicate at what water level the measurent vas made to reveal more fully their meaning.

3.2.2 Area stratification

It is common practice at the design process of a fS to divide the area under consideration into number of maller areas, here called "strata". Field operations of the survey are taking place within the established strata. Past experience has proved that this method simplifies the vork of the field personnel and at the same time improves the quality of the obtained results.

For stratification purposes various criteria can be usede.g.,

1. One can divide lake arbitrarily into three parts:
stratum 1: southern part of the lake
Stretum 2: midde part
8tratum 3: northern part
2. A lake can be divided into number of portions (strata) which should be of equal size as far as the leagth of shoreline is concerned.
3. The cases in which supplementary information is available from other related studies (limnological, biological), these date can be used for proper atratification of a lake.

3.2.3 The fishing sites (Primary Sampling Units)

At inland waters where fishing is taking place the population is concentrated in "fishing sites", here called Primary Sampling Units (PSU's). Specifically, a fishing site can be conaidered to consist of two "etatiatical units":

1. "Residential area" where the fishermen are living.
2. "Landing place" or "home beach" where the fishermen keep their fiahing craft (local canoes).

Further, by taking into account the "mobility" of the fishermen, fishing sites can be clasified as follows:

1. Permanent fishing sites.
2. Fishing camps.

From a statistical point of view a fishing site can be considered as "permanent"
if fishermen live there for long period of time (e.g. more than one year) and have mo intention to more to enother place, at least in the near future.

A fishinc comp is place where fishermen live for a relatively short period of time and intend to iesere the place in the near future. either to go beck to their home fishing eite or to another place.

Information about the atate of permanency of aishing site can easily be collected by using apecial questions in the questionnaire of Fi. Usually the required information is obtained from the chier of the fishermen:

```
    1. Since when have you been in this fishing site?
    2. Are you planning to move from this fishing aitef
                    Yes }\square1\mathrm{ Ho }\square
        2.1 If YES.
        a) when
        b) where are you going
    Besides the problem of classifying a fishing site as a permanent fishing aite or
a fishing camp, there is the decision whether or not to divide a multi-grouped settie-
ment into independent places or treat it as a unit.
    To deal with the problem the following criteria cen be used:
            1. Physical distance between the places.
            2. Recognition of one or more chiefs.
            3. Difference of name or not.
    Depending on the nature of these factors a decision should be made to treat the
multi-grouped settiement as one unit or as a number of independent unite.
    A fishing site of any type may have one or more landing places. Usually small
fishing sites have one small beach serving the entire unit, whereas large fishing
sites might have several distinct beaches with different functions, e.g. lending of
local canoes, loading canoes going to market or transport launches.
    3.2.4 The Fishing Economic Unit (FEU)
    The total fish production of a fishing industry from the viev of an economic
study) is the result of the operations of the fishing economic unita (FEU's) within a
given period of time. Specifically, in our case FEU's fall into two categories:
            1. Usual Fishing Unit (UPU), which consists of fishing eraft,
                    fishing gear and fishermen(men) to carry out fishing
                    operations.
                    2. Minor Fishing Unit (MFU), which is an integral unit com-
                    posed of fishing gear and fisherman (without fishing craft)
                        to carry out fishing operations.
            It should be noted that by taking as criterion of stratification the ovnership of
the unit, the FEU's can be divided as followa:
                    1. Private ownership units.
                    2. Agreed partnership units.
                    3. Cooperative units.
```


3.2.5 The components of a FEU

3.2.5.1 Fishermen

```
A fisherman is a person who engages in actual operation of capture or culture of aquatic resources. Therefore, family members or others who asist the vork relating to the fishing operstion such as unloading fish, net repairing, processing. etc., who do not participate in fishing operations ere not considered as fishermen.
Fishermen may be clasified concerning "employment atatus" as:
1. Fishermen boat owners.
2. Fishermen with gears only.
- ..........
```

```
Another classification of fishermen is according to the "tine sent for fishing" vithin year:
```

1. Full-time fishermen.
2. Part-time fishermen.
3. Occasional fishermen.

3.2.5.2 Fishing cear

A principal requirement of observations of fishing is that there should be correct identification and description of the gears owned by are, and the methods they are meine.

The gear and methods of fishing in use in Africen countries (iniand fishery) cen be divided into two main groups:

1. Small-scale fishing methods, e.g. traps, baskets, hooks, etc.
2. Comercial fishing methods, e.g. gillnets, seine nets, hand nets.etc.

It should be noted that the uaers of the results of fisheries statistical surveys should have in mind the existing differences among the following four distinct magnitudes of fishing gears:

1. Number of fishing gears owned by a FEU.
2. Number of fishing gears set (in fishing operation).
3. Number of fishing gears of the number set, which were inspected.
4. Number of fishing gears, out of the inspected ones, which ceught fish.
3.2.5.3 Fishing craft

From an economic point of view, the size and type of fishing craft owned by a feU correaponde to the amount of capital invested by the unit. In our case the traditional fishing craft are (example):

Sesse-canoe

Dugout-canoe
Tomarica-canoe
Karua-canoe
-tc.

3.2.6 The Fied operation of Erame Burvey (F8)

Generally speaking the main purpose of the "field operations" of a fs survey is to obtein the required iteme of information by using the methods which vere developed at the design process of the survey.

For the field operations of a frame surver in inland waters the folloving three methods hare been developed:

1. Method 1 - Water approach.
2. Method 2 - Aerial approach
3. A combination of the above two methods.

3.2.6.1 The vater approach

In the "water approach" the main task of the "working group" (observer asistant + speed boat) can be ummarized as follows:

1. To carry out mile by mile field arvey (within each established stratum).
2. During the trip the observer has to look at all the ghoreline following the topographical map. By making use of binoculars he has exactiy to note all the fishing sites which he comes acrose and locate them carefully on the topographical map.
3. The group has to land at every detected fishing aite and by following the instructions, to collect the required items of information.

Usually for the collection of the required information one of the folloving three methods can be used:

1. Items of information are collected by interviewing the chief of the fishermen and other competent persons of the fishing sites covered by the survey.
2. Items of information are collected by conducting a compound by compound urvey in the residential area of fishing sites, covered by the FS.
3. A combination of the above two methods.

It should be noted that the effectiveness of arame Survey based on the water approach depends on the time needed to close the field operatione. We must remember that, in inland waters, fishing economic units have a high level of mobility.
3.2.6.2 The questionnaire of a FS (water approach)

The principles used at the design process of the questionnaire of fis (water approach) can be summarized as follows:

1. The questionnaire should be divided into two parts: a) heading of the questionnaire and b) body of the questionnaire.
2. Questions in the body of the questionnaire should be grouped into meaningful categories.
3. All questions have to be numbered by using a proper "numbering system".
4. A "code syetem" hes to be used for numerical identification of the pisheries sites.

Form Fl of Appendix Ia is an exemple of the format of the questionnaire used (water approach, method 1) in Frame Surveys at aig lake.

3.2.7 The aerial approach

This method calls for bird's eye viev from the air along the shoreline of the lake under study. The objects of the survey are:

1. To detect all the fishing eites along the shoreline of the lake.
2. To make the proper location of the fishing sites on the existing topographical maps.
3. To obtain an estimate of the size of each fishing site in terms of the number of "boats seen" and "houses seen".

Past experience has proved that:

1. The view from the air reveals the distribution of the fishing sites on the lake periphery.
2. There are no serious problems for the proper location of the fishing sites on the topographical map.
3. The counting of the fishing bots/houses is not a very difficult task.

This method has number of advantages as vell as some disadvantages:

Advantages:

1. An area frame of the fishing sites can be established vithin short period of time (number of fishing sites, area distribution, size (in terms of fishing boats seen)).
2. Provides an indication of the importance of the various regions of the lake under study in terms of concentration of fighing boats.
3. The established area frame can be used for the selection of the samples of other surveys covering the same population.
4. These data can also be used to make the field operations of a frame arvey based on the "water approach" covering the same population, more efficient in terms of time and effort.

Disadrantages:

2. This method does not reveal the type of the fishing sites, -. \cdot. permanent fishing ite, fishing camp, etc.
3. There is no chance of obtaining information on other basic characteristics featuring the fishing industry.
4. It is always desirable that the quality of this method be checked by using proper techniques.

3.2.7.1 The questionnaife of the arvey (aerial approach)

For the collection of the information needed aretavely rery simple questionnaire is used for the survey. Form fa of Appendix Ia is format of the questionnaire used.
4. THE MEARIMG OF COVERAGE ERRORS

4.1 gources of error (vater approach)

From ampling point of view the following types of coverage errors might occur during the field operations of arame Survey (water approach):

1. Onissions of fishing sites: Omissions of fishing sites Is one of the most seriou errors in FS. This type of error effects both the total number of the existing fishing sites in the area under study, as well as the total number of the existing fishing conomic units and their componeats (fishing boats, fishermen, fishing gear).
Past experience bas proved that the observers of a FS do not attach any weight to the sise of unit covered by the eurvey. Thus, the probability of an oliseion of amall fishing aite is equal to the probability of omission of a medium or large fishing site. This rource of errors lead. to ceriout underestimation of the urvey characteristics.
The main sources of omision of fishing aites can be attributed to:
a) The carelessness of the observer.
b) Natural causes (e.g. camourlage of aishing site by thick fringe of trees etc.).
2. Counting errors: Incomplete coverage of the FEU's within the fishing sites covered by the survey. These errors affect the size of the fishing sites (underestimation).

This source of error is mainly attributed to the carelessines of the observer.
3. Erroneous inclusions: Another type of error altogether is the inclusion in the survey of purely agricultural villages or other kinds of units which are not covered by the FS. These kinds of errors increase artificially the size of population under study.

This source of error is mainly attributed to the inexperience and carelessinss of the observer.
4.2 Sources of error (aerial approach)

The following types of errors occur at the mesurement process of an arial rlight:

1. Omissions of fishing sites: Specifically of small sise.
2. Counting errors: Errors in the process of counting fishing canoes within the fishing sites covered by the survey. Specifically, countingerrors in an aerial filght survey consist of two components:
a) Omissions of fishing canoes which cannot be seen from the air.
b) Inclusion of non-fiching canoes and abandoned canoes.
3. PLARNING A COVERAGE CHECK SURVEY

5.1 Introduction

Coverage Check Surveys (CCS's) have in recent years become a regular feature of the Frame Surveys in Inland Waters. For the design of achmodern techniques are used.

5.2 The purpose of a CCS

The main purpose of a $C C S$ is to detect and estimate the magnitude of the coverage errors e.g. omissions and erroneous inclusions of fishing sites, omissions and erroneous inclusions of fishing economic units, which occured during the field operations of a FS.

Generally speaking, the total number of arvey units covered by frame Survey is composed of two parts:

$$
P=P_{1}+P_{2}
$$

where:
$P=$ Overall number of units covered by the survey
P_{1} - Erroneous inclusions
$P_{2}=P-P_{1}=$ Correct inclusions

Further, the total number of survey units in the population under study can be written:

$$
P=P_{2}+P_{3}
$$

where P_{3} is the number of units ondted at the messuring process of the FS. Under these circumstances, the main goal of CCS is to estimate the size of the magnitudes P_{1} and P_{3}.

5.3 Designing a CCS

The CCS are intenaive tudies based on relatively small samples and every effort is made in them to attain the highest level of efficiency posibie. In our case the main ingredients of acs cen be ummarized as follows:

1. The ficld vork of the survey is carried out by the best personnel of the FS.
2. The "observation group" is instructed to carry out mile by mile field survey in the selected area zones.
3. Items of information about the urvey characteristics are obtained by using the intensive interviev approach.
4. Every assistance is given to the "observetion group" in order to ensure efficient field work.

For these and other reasons the results of the ccs are more reliable than the initial one (FS). We can assume that errors in the ccs are kept to the minimum.

The following estimates are provided by a CCS:

1. Estimation of the number of omitted fishing sites (and by major size groups).
2. Estimation of the total number of omitted fishing econonic units (and their components).
3. Estimetion of the number of erroneously covered fishing sites.
4. Estimation of erroneousiy covered units.

For the evaluation of the omissions, erroneous inclusions of fishing sites in a FS the following pattern is used (example):

53	CCS		
	Has	NO	HOHLL
y H	1	B	$A+B$
No	c	(D)	$C+(D)$
TOTAL	$1+C$	$B+$ (D)	$A+B+C+(D)$

where:

$$
\begin{aligned}
& A= \text { Piahing sites which have been covered by both the } \\
& \text { Fs and the CCS } \\
& B= \text { Pishing sites which have been covered by the fs but } \\
& \text { not by the CCS. Further, B can be broken into two } \\
& \text { parta: } \\
& B=B_{1}+B_{2}
\end{aligned}
$$

where:

$B_{1}=$ correct inclusions in FS (omissions in CCS)
$B_{2}=$ erroneous inclusions in FS
C Fishing sites which have been covered by the CCS but not by the FS (omissions in the FS)
D = Iishing sites which have been omitted in both surveys (D is an unknown magnitude uniess a further CCS can be conducted)

Counting errors within the fishing sites covered by the fs are discovered by matching the data of the fishing sites identified in both the FS and CCS.

6. CATCH ASSESSMERT SURVEYS

6.1 Introduction

Statistics of fish catch is a valuable tool for sound management of fishery and for planning, marketing and other aspects of fishery development.

The gathering of these statistics from African freshwater fisheries is complex. The fishermen are frequently widely distributed along thousands of miles of lakeshore and often land their catches at hundreds of sites. Further, various tribes are engaged in fisheries on lake and since their fishing techniques and fishing capacities vary considerably, there is lack of uniformity in the economy. There is good deal of mobility of the fishermen around the coastine of the lake during the year. finally, the production of the lake is subject to regional variations as well as samal variations within the year. Since the population is subgect to change, a urvey carried out on single occasion or on atatic basis cannot of itself give any reliable estimate of fish production on a yarly basis, nor any information about the nature and rate of such a change.

6.2 Designing a Catch Assessment Survey (CAS)

From the above analysis it is obvious that a numer of factors must be taken into account at the design process of a CAS.

6.2.1 Area stratipication

It is well known that the productivity of the lake is a function of the prevailing limnological conditions and that these factors are not the same throughout the lake. If the surveyor had wished to ensure that different types of limnological zones (Lz's) vere adequately represented in the ample he could have stratified the area under study by using as criteria of stratification limological factors. Pastexperience has proved that this kind of stratification increases the representativeness and the precision of the sample.

6.2.2 Stratification of the fishing gites within the established LZ's

In order to take full advantage of posible gaine from tratification the sample design calls for a proper stratificetion of the fishing ites within the established LZ's. The LZ variation (regarding any variable) can be reduced considerably if fishing sites within each iz are dividedinto groups (minor strata) taking their aize (e.g. number of boats) as the criterion of stratification. for samping purposes, a number of fishing sites should be selected within each established minor stratum.

6.2.3 sampling vithin the selected fishing sites

Within each selected fishing ite one may decide to collect informetion from all the fishing conomic unite of the fishing site or to select small sample of fishing economic units for further investigation. Modern sampling techaiques argest that the latter alternative is the best one from cost and precision points of viev.

6.3 Types of CAS

By taking as criterion of classification the measurement procedure used for the collection of the information, CAS's can be grouped into three types:

1. CAS's based on the interview approach.
2. CAS's based on the real measurement approach.
3. CAS's based on mixed approach.

In type 1 surveys the required items of information are obtained by interviewing the respective fishermen e.g., a set of questions are asked and the answers are recorded in standardized form. It is obvious that the reliability of the resilts of the survey depends on the memory of the respondents and whether they are willing to provide the true information.

In type 2 urveys items of information are obtained by actual measurement of landings. In this type of survey the reliability of the results are not affected by the reapondent (memory errors, etc.).

6.4 The reference period of the survey characteristics of CAS

It was the erroneous belief in the past that information for the items covered by a CAs must be collected all the year round. However, this approach hardly can be justified by the modern sampling techniques.

Highly reliable results with minimum cost and effort can be obtained if we are in a position to determine the "optimum" reference period of the characteristics under study. It has been proved that within the various seasons of aishing year the optimum reference period of the survey characteristics had a cycle of three to seven days. In ach a case the extension of the reference period for example from three days to month or to quarter would result in mere repetition of the cycle, which means that the sampling error would not be significantly affected, whereas the cost and the quality of the survey will be affected badiy.

6.5 Listing

Listing of the survey units within the sample fishing sites is an important function in cases in which modern ampling techniques are going to be used for our surveya. The obtained information can be used:

1. For the selection of our samples within the ample fishing sites.
2. To provide an estimate ebout the mobility pattern of the fishermen.

6.5.1 What to list

Within each sample fishing site lists should be used to list:

1. Fishermen boat owners (by type).
2. Fiahermen with fishing gears only.

6.5.2 How to list (general arinciples)

The main parts of atatiatical list are:

1. The heading of the list.
2. The body of the list.

By listins we mean writing down on prepared forms (lists) the identification particulars of all the units of investigation within the ample fishing site.

It is important that the listing be:

1. Complete: in the sense that it covers the whole of the units to be surveyed.
2. Accurate: that is, the information for each unit listed on the form should be free of errori.

Rules for listing:

1. List each unit on eeparate line.
2. Do not skip any lines within the body of the list.
3. List each unit only once.
4. If there are doubta use the column of remarke.
5. Give page numbers to the additional abeeta and insert the code number of the fiahing aite.
6.6 Intervieving
6.6.1 Introduction

An interview (CAS type l) involves meeting betveen two persons the recorder and the respondent (risherman). Further, the respective questionamire(s) is (are) to be used for obtaining the required iteme of information from the respondent.

6.6.2 How to ask the questions

The way in which you ask the questiona is matter of great importance becaue it is essential that we collect data from all respondents in a uniform menner. Therefore, the recorders must ask the questions in the same way and in the prescibed order.

6.6.3 Some rules for interviewing

In all African countries a lot of importance is placed on greetinge. You must therefore remember to greet the people you meet in the place you have to interviev. This might mean the difference between access and failure.

You must know what your goals are and be prepared to lay your cards face upvarde when you are confronted with rumours i.e. explain your programe as precisely as you can.

```
You must know the reason for asking certain questions on your beets, e. the fishermen do not want to tell you their fish catches for fear of taxation. Explain why you want it.
```

Listen vell. This is evidence of your respect for the individual and your interest in him.

The manner and tone of your voice should convey friendifness and vilifngness to understand.

Avoid during the interview comments that have angetive plavour. e.g. " 80 you are a lazy man".

Wives are often unwilling to give information when their husbands are not present. Do not force then. Call on the house agein.

When you sense that the man is drunk, carefully put off theinterviev. Call in another time.

You must have sense of humour in everything you do. This releases bean. Bey what you have to say with amile.

6.6.4 Hov to elose the interview

The way in which you close the interview can have a definite effect on your future reletionship with the respondent. Alvays try to leare him with friendly foeling toward both you and your office so that you will be welcomed on subequent visite to the fishing site.

6.7 Read measurement

In CAs type 2 items of information are obtained through actual measurements made by recorders on selected landings vithin the eample beaches. Some of the principles omployed for the mesuring process are as follows:

1. Before the fishing canoes return make certain you are ready to record.
2. You ought to have seat of some kind so you can write casily on the olip-board. A rag is useful for wiping your hands after handifig fish or gear. Keep your pencil sharpened so you can write neat figures in the column of the questionnaire. Always use pencil (ball point and water equal no results). Your assistant should carry his -celea and other equipment in a plastic pail so you can casily move from one selected cance to the other. The peil can eerve as acat.
3. When asected canoe lands ask the fishermen to show you what he has caught. Big fish will be lying in the botton of the cance and you can usually collect each species together and weigh them before someone takes them away. 8mall fish will probably still be in the net and you can vaigh them as they are picked out of the nets.

6.8 How to select a engple of second stere units

In our case the selection of ample within fishing site is mechanical operation. For example, list contains $k=9$ units and ample of n=3 units are going to be selected. The eelection is carried out as follows:
i) select the table with heading fog (tables are provided);
i1) read the second column of the table where there are numbers in brackete:
iii) ring the eerial numbera on the list. These are the seme units of the sample; in this case numbers 3,6 and 9 on the list are the selected units;
iv) intervievs (real messurements) should be completed for the selected units only and the collected informetion hould be recorded on the respective questionnaires.

Example: the format of a table (f=9, $n=3$)

Mubber of units in the ifit	selected units	sample uniti
n=9	(3)	1
	(6)	2
	(9)	3

6.9 Source documents

For the collection of the required information two kinds of ource documente (questionnaires) are used (see Appendix Ib).

Form: Al-3: This questionnaire is used to obtain the required items of informetion on the tatic characteristics of the selected fiahing economic unite. The selection of the fishing economic units is made at the residential area of the fishinc site. For the collection of the information the method of "personal interviev" is used.

Form: A2-3: In this form items of information are ought on the dymmic characteristics of the sample fishing economic units (fishing effort, fish cetch). The selection of the units is made at the beach (landing place) of the fiahing ite. for the collection of the information the method of "real measurement" is used.

```
APPENDIX Ia - THE SOURCE DOCUMERTS OF A FRAME SURVEY (EXAMPLE)
```

Pome: F1
PRANE SURVEY

Survay date

C.Mo.

FRANE SURVTY
(Acrial Lopromoh)
Misht number.
Hane of obmarver.............................

Survey time.....................................

Sample oode No. of the eurvey area
\square

- A eeparation should be nade between plank boata ma annoen

```
APPENDIX Ib - THE SOURCE DOCUMENTS OF A CAS (EXAMPLE)
```


Hen of the fiabiag aiter

2
2
8
0
0
0
0
0
n
2
2

Gouttede9
Oallon-Guttede0

Exercise No.l

Tablel

Serial Mo. of fish	Woisht ins
1	1.5
2	0.5
3	0.5
4	1.0
5	1.0
6	2.5
7	0.5
8	0.5
9	1.0

Exercise No. 2

A fishery place is divided into two zones (south and north). In the outh zone there are four fishing sites andin the north aix fishing aites. The table below (Table 2) provides the number of fishing canoes by fishing sites. What is the total number of fishing canoes by zone and for the fishery place as a wole?

Table 2

Zone	Ser. No. of rishing sites	No. of fishing canoes
I	1	20
	2	5
	3	15
	4	40
II	1	5
	3	10
	4	15
	5	20
	6	50

Exercise No. 3

A FS was conducted at a given lake. According to the design of the arvey the area vas divided into five strata of equal size based on the length of map shoreline. Further, the "water approach" was used to collect items of information. Prepare a figure showing an ordinary allocation of the fishing sites at the lake. Allocate an arbitrary number of canoes to each fishing site and calculate the total number of canoes by stratum and for the lake as a wole.

Exercise No. 4
What is the difference between the following two methods of collecting iteme of information: (i) Interviewinp approach (ii) Real measurement approach.

Exercise Mo. 5

Explain the meaning of the coverage errors in as (water approach).

7. INTRODUCTION

7.1 The structure of a fishing industry

Generally speaking a fishery in an advanced area is areat complex of interrelated assemblance of fishing vessels, fishing equipment, harbour workers and machinery for fish handing, preaervation and processing. There are market and storage buildings, railway sidings, plants producing fertilizer, fismeal and oil, factories providing nets, ropes and ice, specialized shipbuilding yards and finally the houses and other social capital of the commanitiea needed to operate all these abects of the fishery.

In small fishing unit economies the state of the fishing industry is very simple and its organic whole can be considered rather as primitive. The main characteristice of the industry are:

1. The fisheries are diffuse, disordered and in the first stage of evolution.
2. Fishing activities are mainly carried out on a private (family) basis and the predominant type of fishing craft is the fishing canoe.
3. There is a lack of storage facilities and the handing. preservation and processing of fish is the responsibility of the fishermon (ramily members).
4. The marketing system is not very well organized and there are some problems for a proper disposition of the fish catch.

7.2 The division of a fishery

It is convenient in economic and statistical studies to divide a fishery into three distinct phases:

1. Primary phase: fish production.
2. Secondary phase: fish processing. This section covers the conversion of the primary product (catch or yield) into preserved commodities.
3. Tertiary phase: fishmarketing. This section covers the distribution of fish and fishery products from producer to consumer.

7.3 The fishing economic unit (FEU)

The total fish production (fish catch, yield) of fishing industry, from the viewpoint of an conomic study, is the result of the operations of the fishing economic units (PEU's) within given period of time. Specificaliy, in our case, feU's fall into two categories:

1. Usual Fishing Unit (UPU) which is an integrated unit composed of fishing craft, fishing gear and fishermen to carry out fishing operations.
2. Minor Fishing Unit (MFU) which is the integral unit composed of fishing gear and fisherman (without fishing craft) to carry out fishing operations.

By taking as criterion of classification the state of the ownership, the feu's can be divided into three categories:

1. Private ownership.
2. Agreed ownership.
3. Cooperative.
4. SAMPLING SURVEYS IN FISHERIES STATISTICS

8.1 Why Sampling Surveys?

In its broadest sense the purpose of sample Survey is the collection of information to satisfy a definite need. A Sample survey has now come to be considered as an organized fact-finding instrument. Ita importance nowadays lies in the fact that it can be used to ammarize, for the guidance of administration, management, etc., facts which would otherwise be inaccessible owing to the remoteness and obscurity of the persons or other units concerned, or their numerousness. As a fact-finding agency a Sample survey is primarily concerned with the accurate ascertainment of the individual facta recorded and with their compilation and sumarization.

8.2 Type of fisheries statistical surveys needed

For the collection of the items of information covered by fisheries statistics the following types of statistical surveys are needed.

8.2.1 Primary phase (rish production)

8.2.1.1 Frame Survey (FS)

A Frame Survey is a sort of inventory arvey. Its main aim is to provide accurate information about the size and structure of the fishing industry under study.

The methods used for the collection of the information in a fS are either "aerial approach" or "water approach" or a combination of both of these.

The survey items covered by a FS are:

1. Number, size (in terms of fishing boats) and area distribution of the fishing sites.
2. Number of fishing economic units (feU's) of the industry and of their components (fishing craft, fishermen, fishing gear).
3. Migration of the FEU's.
4. General information about the methods used by the fishermen for processing and marketing their catches.

From a sampling point of view, frame survey is a census urvey based on the method of complete enumeration of the survey units.

Since frame arvey ecures complete coverage of the population under study, it provides an ideal "sampling frame" for the selection of the samples of other surveys covering the same population.

8.2.1.2 Catch Assessment Survey (CAS)

The primary objectives of a CAS are to obtain estimates on current basis of total catch in the lake (river), and on a regional basis. Secondary objectives include the estimation of the species composition of the catch and the fishing effort involved in obtaining the catch.

The methods used for the collection of the items of information in a cas are either "objective measurements" or "subjective measurements" or a combination of both methods.

For sampling purposes the method of sampling used for the arvey is "samping in space and time".

It has been proved that there is quantitative relationship between the results of a CAS and the results of a Stock Assessment Survey (SAS). The established mathematical models are of great value for management purposes.
8.2.1.3 Cost and Earning Survey (CES)

CES is a fishery economic survey. One of its main objectives is to study the size of profit derived from individual fisheries undertakings. Also, the results of the survey can be used to estimate the cost of production of different types of fishing economic units in order to evaluate the existing fish price system.

The sampling method used for the survey is "two-phase stratified sample". In this case a sub-sample is selected from the main sample of the Catch Assessment survey. Before any selection is made the sample units are grouped into strata, by taking as criterion of stratification the type of the rishing economic unit and a rew units are selected, with equal probabilities, fromeach established stratum.

For profitability studies the items covered by the survey are:

1. Current expenses which are directly spent for each fishing operation.
2. Wages paid to employed labourers (estimated cost of unpaid family members), repairing expenses for hull (engine), depreciation cost for fixed assets etc. The profit gained by the individual fisheries undertaking equals:
(Total fish sale)-(Above items, $1+2$)
8.2.2 Secondary phase (processing)

8.2.2.1 Fish Processing Survey (FPS)

In a large fishing unit economy a Fish Procesing Survey can be considered to consist of two parts:

1. An inventory survey where the main objective is to determine the structure, capacity and organization of the processing industry.
2. A production survey where the main objective is the collection of information about the volume and value of processed aquatic animals and of the products produced.

In mall fishing unit economies curing of fish is done mainly by the fishermen (relatives of the fishermen) themselves or by minor fish processors who live in the fishing villages. The processing takes place soon after the fish are landed at the producing fishing sites. Further, some fish which have already been processed are reprocessed mainly at market landing places to get higher grade commodities. it is obvious that higher grade commodities are of a different nature than the usual ones, especially from the vievpoint of measures for fish price maintenance. Reliable estimates of the survey characteristics with minimum cost can be obtained by integrating the survey design of Fish Processing Survey with the designs or the frame gurvey and Catch Ascessment Survey. This principle was successfully employed in a number of inland vater etatistical surveys in Africe.

8.2.3 Tertiary phase (marketing)

8.2.3.1 Fish Marketing Statistical Survey (FMSS)

The main objectives of the urvey are the collection of information on the quantity of fish transacted and the corresponding price of fish at the wholesaler stage. Other objectives of the survey are to trace the marketing routes of fish transacted and to tudy the stucture of retail fish markets and the price of fish purchased by the consumer.

A marketing statistical survey for wholesale transactions can be planned either as a PSS - at producing fishing sites, or aSS - at market landing places. The design of PSS - at producing fishing sites, is usually integrated with the design of the Catch Assessment Survey covering the same population. In such a case the survey unit is the fishing economic unit. The MSS - at market landing places, is conducted independently from the CAS and the required items of information are obtained from the fishmongers.

Table 8.2.3.1.1 gives an idea of the existing relationship between survey items and type of surveys in fisheries statistics.

Table 8.2.3.1.1 Relation between survey items and type of surveys (Fisheries Statistical Surveys)

Phase	Type of survey	Survey unit	Survey items (groups)
$\begin{gathered} \text { A. Primary } \\ \text { phase } \end{gathered}$	1.Frame survey	$\begin{aligned} & \text { Fishing site/Fishing } \\ & \text { Economic Unit (FEU) } \end{aligned}$	1. Number of FEU's 2.Area distribution of FEU's 3. Ingredients of the FEU's: 3.1 No.of fishing craft 3.2 No. of fishermen 3.3 No. of fishing gear 4. Mobility of the FEU's 5.General information on processing and marketing habits of the FEU's
	2. Catch Assessment Survey (CAS)	Fishing Economic Unit	```1.Pish catch (total, regional basis) 2.Species composition of catch 3.Fishing effort items```
	$\begin{aligned} & \text { 3. Cost Earning } \\ & \text { Survey (CES) } \end{aligned}$	Fishing Economic Unit (by type)	1. Total revenue 2.Cost: 2.1 Running cost 2.2 Wages, etc. 2.3 Maintenance and repair boat/engine 2.4 Repair or renewal fishing gear 2.5 Other charges 2.6 Depreciation cost (hull, engine) 3. Estimated amount of capital invested and interest of the amount of capital invested 4. Amount of taikes (levies) paid
$\begin{aligned} & \text { B. Secondary } \\ & \text { Phase } \end{aligned}$	1.Pish Proceseing Survey (FPS)	Processing unit	```I.Number of processing units by type 2.Processing capacity 3.Processed products```
$\begin{aligned} & \text { C.Tertiary } \\ & \text { Phase } \end{aligned}$	1.Pish marketing statistical curveys	Marketing unit	1.Inmber of marieting units 2. Quantity of fish transacted 3. Price of fish at wholesaler 4. Price of fish paid by consumen

9. THE LABOUR PORCE OF A FISHING INDUSTRY

9.1 Determining the labour force

Manpower statistics consist mainly of separating population data into the categories given, and comparing them. However, the users of labour force deta should heve in mind the existing differences among the following three distinct magnitudes of labour force statistics.

9.1.1 Population of working classes

It is convenient to treat the number of people from 15 to 64 years of age as the group supplying the bulk of the economically active. calling it the "population of working classes". In our case, the population under study can be characterized as one with a relatively high fertility. It gains a large number of younger people each year and the age structure is weighed with a large proportion of children. According to the local standards the "population of working classes" includes childen vith ages of less than 15 years.

9.1.2 Economically active population

Having defined the population of working classes the next step is to set up a scheme for determining which people are "economically active" and which people are not. This implies a standard for judging what activities constitute "productive vork" and some criteria to judge what degree of performance is surficient to clasa person as "active".

9.1.3 Economically active population by industry

We have defined above the economically active population amersone reporting a productive work (from an economic point or view). These persons can now be ciasisied into groups by taking as a criterion of clasification "where the person is employed" i.e. in which sector of the economy (industry) the person is employed (rishing. agriculture, building construction, etc.).

In our case we are going to deal with only the labour force of the fishing industry.

9.2 Labour force by sub-sector of the industry

It has been mentioned that the fishery is divided into three phases (sections):

1. Primary phase: fish production.
2. Secondary phase: fish processing.
3. Tertiary phase: fish marketing.

In such a case the total labour force of the industry (L) can be reclassified into groups by taking as ariterion of clasification the tructure of the industry:

$$
L=L_{1}+L_{2}+L_{3}
$$

where:
L_{1} : labour force of the primary phase (LF - P. Ph)
L_{2} : labour force of the secondary phase (LF - 8.Ph)
L_{3} : labour force of the tertiary phase (LF - T. Ph)

9.3 Labour force by type of activity

Within each sub-sector of the industry arther grouping of the labour force cen be introduced by taking as a criterion of tratification the actual type of vork (occupation) of each individual. Table 9.3.1 gives an idea of the occupational structure of the fishing industry on ab-sector basis.

Table 9.3.1 Distribution of the Economically Active Population by occupation within each sub-sector of the fishing industry

sub-sector	Occupation
1. Primary sector	1.1 Pisherman 1.2 Boy assistant fisherman of age less than ... years 1.3 Unpaid family member who assists the work relating to the rishing operation 1.3.1 Loading fishing material 1.3.2 Unloading ifsh 1.3.3 Net repairing 1.3.4 Boat repairing 1.3.9 Other (specify) 1.4 Net maker 1.5 Boat maker 1.6 Porter 1.9 Other (specify)
2. Secondery sector	```2.1 Processing unit 2.1.1 Fisherman 2.1.2 Wife (relatives) of the fisherman 2.1.3 Other (specify)```
3. Tertiery sector	```3.1 Fish trader (wholesale) 3.1.1 Trader-wife (or relative) of the fisherman 3.1.2 Local trader 3.1.3 Non-local trader 3.1.4 Other (specify) 3.2 Fish trader (ratail) 3.2.1 Itinerant trader 3.2.2 Permanent trader```

9.4 Fishing labour force

From the above analysis it is obvious that the fishing labour force constitutes only a part of the labour force of the primary phase (LF - P. Ph) of a fishing industry. Specifically, fishing labour force can be defined as the number of persons who engage in actual operation of capture or culture of aquatic resources. Therefore persons who participate in the vork relating to fishing operations, (unloading fish, net repairing, etc.) who never go on the water are units of another component of the LF - P. Ph, and not of the fishing manpower.

9.4.1 Measuring the fishing labour force

For measuring the fishing labour force one of the following two approaches can be used:

1. Census approach.
2. Labour rorce approach.

According to the "census approach" fishermen are simply those who report participation in fishing operations during the previous year.

According to the "labour force approech" fishermen are those who actually participate in fishing operations during the urvey period (veek).

It is obvious that the above two approsches reflect different conceptions of the nature of the conomic activity. since fishery is highly seasonal the labour force epprosch can be used to measure fluctuations in the number of fishermen over time.

9.4.2 Classification of fishermen

Fisheraen may be ciassified according to the "time spent for fishing. githin a year:

1. Full-time fishermen.
2. Part-time fishermen.
3. Occasional fishermen.

Another classification of fishermen is according to "employment atatus".

1. Fishermen canoe owners.
2. Fishermen with gear only working for themselves.
3. Assistants.
4. RESPONSE ERRORS AND SUPERVISION

10.1 Response errors

10.1.1 What is meant by response errors

It is reasonable to make the assumption that for the "survey unit" covered by a survey there is always true value (Individual True Value ITV) for the characteristic under study. In other words, it is reasonable to assume that there is arue value y_{i} attached to the unit U_{i} in the population.

A recorder assigned to collect information on unit U_{i} plays role or person who is trying to shoot at a target. In only some cases will he succed and the number of "successes" in a survey will depend on:

1. The nature of the question.
2. The way the question is put.
3. The experimental conditions of the survey e.g. how much precaution has been taken at the process of designing the survey to minimize the chance of measurement errors.
10.1.2 The meaning of IRE and TRE

In any case the difference between an $I T V$ and the value "recorded" on the questionnaire is the Individual Response Error (IRE).

If, for example, the ITV of nets owned by a fisherman is 1000 yards and the value "recorded" is 600 yards there is a response error.

The aggregate of IRF's we term Total Response Error (TRE).
It is obvipus that the seriousness of the TRF in particular survey will depend on the extent to which the IRE's cancel each other out.
10.1.3 Main sources of response errors
10.1.3.1 Asking the questions

Recorders are usually instructed on:

1. How to greet the respondent.
2. How to ask the questions e.g. keep to the wording and order on the questionnaire and to ask the questions in a stated manner (in case of "real measurements" there are special instructions which the recorder has to follow up).

If the recorder does not follow the instructions it tends to produce source of response errors.

10.1.3.2 Probing

In epite of instructions recorders may differ in the extent to wheh they probe in order to arrive at what they consider to be accurate response. Differential probing undoubtediy gives scope for the operation of response errors.

10.1.3.3 Recording the anser

Carelessese in recording is another potential source of error. Potential errors are:

1. Recorders may omit to record answers.
2. Recorders may record answers incorrectiy.
10.1.3.4 Cheating

An eltogether different cause of response error is conscious distortion or cheating.

It should be stressed that survey designers have their own methods for detecting choating and this is the case in our urveys.

10.2 supervision

The succese of method using the interview method (real measurement) depends lergely on the ability of the recorders to elicit acceptable responses. Their selection and training is very important.

Observations by upervisors during the course of the survey operations is valuable for maintaining standards and keeping the quality of the recorders at an acceptable level.

10.2.1 The upervisor's tesk

The supervisor is responsible for:

1. Arranging payment of recorders for their monthly pay and their per diem cleim.
2. Simplifying the field movemente of the recorders e.g. providing transport etc.
3. Solving queriea etc., which are referred to him.
4. Checking the completeness and consiatency of the completed questionnaires. Every three months the supervisor should prepare quarterly report for each recorder. It describes sources of errors detected in the course of revieving their work in the office. As required, the report should specify what special steps should be taken to avoid making similar errors in the future.

10.2.2 Field supervision

It has been said that recorders are human beings and therefore liable to make mistakes. It is therefore advisable to keep the quality of the field work constantly under reviev and to investigete any case where recorder appears to be doing unsatisfactory work.

The mein objecte of field work checke me:

1. To check the way the recorderg select the samples of "eurvey unite".
2. To test whether recorder in fact made all interviews claimed.
3. Whether his response rate is satisfactory,
4. Whether he is asking the questions and interpreting and recording the ansers in accordance with instructions.
5. JUDGEMENT AND RANDOM SAMPLE

11.1 Sample versus complete enumeration

From a sampling point of view information on population aay be collected in two vays:

1. Complete enumeration or census. In a census every unit in the population under study is enumerated.
2. Sample enumeration or sample survey. In a sample survey enumeration is limited to only a part or a sample selected from the population.

The main advantages of a sample survey over census are:

1. A sample survey is less costly than a census.
2. It takes less time to collect and process data from a sample survey than a census.
3. The results from well planned and well executed sample survey are more accurate than those from a complete census that can be taken.

11.2 Judgement and random sample

For the collection of information on sampling basis the followinp two methods can be used.

11.2.1 Judgement sample

This method of sampling is mainly used when the purpose of the survey is to obtain some indications of the survey characteristics in a relatively short period of time. To give some examples of judgement sample surveys:

1. Information can be collected almost inexpensively by asking persons known as experts in the subject.
2. Information can be obtained from few units of the population that appear to be representative of the universe under consideration.

The above procedures are rejected outright by the survey statisticians because we do not know any objective method or measuring the confidence to be placed in the resulta obtained when the sample is selected by judgement. No amount of adjustment and refinement of data from a convenient sample can obscure the two basic weaknesses of the estimates i.e. that they are subject to unknown systematic errors, just that the sample does not provide any basis for objective evaluation of their precision.

11.2.2 Probability sample

The picture completely changes as soon as we begin using amping procedure in which "every unit belonging to the population has anown and non-zero probability of being selected in the sample". This method of selection is called "probability sampling" or "random sampling".

The importance of randomess in the selection cannot be overamphasized. It is an essential part of protection against sytematic errors and the whole theoretical framevork of probability theory rests on it.

To ensure randomess the method of selection must be independent of human judgement. There are two basic procedures:

1. The lottery method: Each member in the population is represented by aisc, the discs are placed in an urn and well mixed and sample of the required size is selected (either with or without replecement).
2. The use of random numbers: The members of the popula-tion-are numbered rrom 1 to N and $n(n<N)$ are eelected from one of the tables in any convenient and systematic way. These become the sample.

Both procedures are independent of human judgement and ensure randomess; the first because the units of the population can be regarded as arranged randomly, the second because the numbers used for making the selection have been generated by a random procedure.

11.3 Sampling in space and time

From a sampling point of view sampling surveys are of two types:

1. Static ample surveys or sample surveys carried out on a single occasion: with the objective of determining the characteristics of the surveyed population at or about a given point in time.
2. Dynamic sample surveys or sample surveys over time: these surveys are mainly used when the population is subject to change and information should be collected on the nature or rate of such change.

The sample method used for dynamic sample surveys in fisheries statistics is that of sample in space and time. A sample or area units firstare selected on random basis. The sample area units are randomy allocated to a number of time periods. Items of information are selected only from the selected area/time units.

12. PROCESSING THE RESULTS OF A SAMPLIMG SURVEY

12.1 Introduction

With the field part of the survey completed, the procesing of the material and the highly skilled task of analyzing begins. The main ingredients of the processing of sample data in inland fisheries statistical surveys are:

1. Editing.
2. Coding.
3. Estimation.
4. Tabulation.
5. Presentation ind interpretation of results.

12.2 Editing

Before the completed questionnaires can be regarded ready for further processing they hould be checked for completeness, accuracy and uniformity.

1. Completeness: the first point to check is that there is an ansver for every question. The main sources of incompleteness of questionsaire are:
1.1 The respondent refued to give an anser. 1.2 The recorder forgot to ask the question or to record the ansver.

> 2. Accuracy: it is not enough to check that all the questions are answered; one must try to check whether the answers are accurate. Inaccuracy may be due to carelessness or to a conscious attempt to give misleading answers, and it may arise from either respondent or recorder. It should be noted that onswers needing arithmetic, even of the simplest kind, often cause trouble.

12.3 Coding

The source documents used for our surveys are pre-coded questionneires and only a few questions have to be coded arter the collection of the respective information. Post-coding is usually done at the editing time of the source documents.

12.4 Estimation

Estimation involves the use of the sample data in order to get estimates for the population characteristics. The estimation procedure (manual estimates) involves:

1. Transfer the items of information from the source documents to the Working Sheets (WS).
2. Working Sheets have been designed in such a way that to get an estimate very imple calculations should be conducted.

12.5 Tabulation

From the Working Sheets the obtained estimates are transferred to the summary Working Sheets (SWS) which are the detailed tables of the arvey. From the detailed tables the summary tables are constructed. These tables are usually relatively amall in size and are designed to set forth one finding or a few related findings as effectively as possible.

12.6 Preparation of reports

When the analysis of a urvey has been completed it is usually necessary to embody the results in a report. The layout or a report has been covered by memorandum prepared by the United Nations Sub-commission on statistical sampling entitled Recommendations Concerning the Preparation of Reports on Sampling Surveys. The main points of recommendations are as rollows:

1. Purposes of the survey.
2. Coverage.
3. Items of information.
4. Design of the survey.
5. Survey operations.
6. Cost.
7. Personnel and equipment.
8. Accuracy of the survey.

13. QUANTITATIVE RELATIONSHIP BETWEEN BASIC VARIABLES

13.1 Introduction

One of the chief objectives of science is to estimate the values of one factor by reference to the values of an asociated factor. When the relationihip betveen two factors is of quantitative nature, the appropriate statistical tool for discovering and measuring the relationship and expressing it in brief formula is known as "correlation".

It may urprise some of us to know that there is very ciose relationship between a good number of basic variabies in the field of fisheries atatistics.

13.2 Some important statistical variables

The user of the results of inland fisheries statistical surveys in African countries should have in mind the existing difference among the folloving magnitudes:

1. Fish_production (FP) (variable "X"): The total fish production (X) of a fishing industry is the result of the operations of the fishing economic units (FEU's) within given period of time.
2. Commercial fish production (CFP) (variable "Y"): The total commercial fish production (Y) is a part of the total fish production which enters the distribution channel within a given period of time. Further, CFP

- cen be broken down as follows:

$$
Y=Y_{1}+Y_{2}+Y_{3}
$$

where:

$$
\begin{aligned}
Y_{1}: & C F P \text { whichenters the distribution channel } \\
& \text { through the existing lakeside markets. } \\
Y_{2}: & C F P \text { whichenters the distribution channel } \\
& t h r o u g h ~ f o o t p a t h s ~ l e a d i n g ~ t o ~ t h e ~ m a j o r ~ r o a d ~ \\
& \text { sysem and inland markets. } \\
Y_{3}: & C F P \text { which is disposed locally without } \\
\quad & \text { pessing through the lakeside markets. }
\end{aligned}
$$

From the above analysis one can easily estabish the following unequalities:

1. $X \geq Y$ or $D_{1}=X-Y$
2. $Y \geq Y_{1}$ or $D_{2}=Y-Y_{1}$

The secondary magnitudes D_{1} and D_{2} are different in nature. Specifically, D_{1} expresses mainly (self-consumption) + (wages and services paid in fish) (fish given to relatives) $+\left(10\right.$ ses of fish). D_{2} expresses the amount of the cFp which does not reach the $\operatorname{cisting}$ lakeside markets. The size of D_{2} is a function of the area distribution of the fishing industry, the existing lake transportation system, the location of the lakeside markets and inland markets, the existing road system and the purchasing power of the local consumers. For a family of African lakes it was estimated that the value of D_{2} renges between:

13.3 Quantitative relationship between the variables "X" and "Y"

The following table shows the yearly fish production and the yearly commercial fish production of ten fishing sites at a given amall lake (live weight). prepare the "scatter diagram" illustrating the existing relationship between these two variables (example):

Serial number of rishing site	Fish production (m. tons) $-x-$	Commercial fish production (mo tons) (y-
1	120	96
2	150	120
3	80	64
4	200	160
5	120	96
6	60	48
7	40	32
8	80	64
9	250	200
10	300	240

13.3.1 How to prepare a setter diesrem

1. Draw two straight lines $O X$ and $O Y$ at right angles (the lines are called axis).
2. Fish production is plotted along the X -axis while commercial fish production is plotted along the Y-axis.
3. Find the points which show the commercial rish production corresponding to the fish production given.

13.3.2 The regression equation $y=f(x)$

Judging from the chart of the above example we see that the relationehip between the two variables is linear, and that the atraight line appears to be good fit to the empirical data. The established general equation can be given by:

$$
y=a+b x
$$

13.3.3 Estimating the regression coefficient (a simple method)

Two pairs of corresponding values of x and y can be obtained from the valuea in the above table. For example:
when, $x=60 \quad y=48$
$x=80 \quad y=64$
Substituting the above values in:

$$
\begin{align*}
y & =a+b x \\
48 & =a+60 b \tag{1}\\
64 & =a+80 b \tag{2}
\end{align*}
$$

Subtracting (2) from (1):

$$
\begin{aligned}
-16 & =-20 b \\
b & =0.8 \\
a & =0
\end{aligned}
$$

The equation is:

$$
\begin{align*}
y & =0+0.8 x \\
\text { or } y & =0.8 x \tag{3}
\end{align*}
$$

From equation (3) estimates of comercial fish production can be made for any desired level of fish production within the limits of the obervatione govn on the chart.

13.3.4 The meanias of the estinated regression coefficient "b"

In the above example the value of the regression coefficient "b" vas found equal to 0.8. This means that out of one unit of fish production 0.8 goes to the commercial fish production.

13.4 Quantitative ralationship between the variables "U" and "W"

Experimental studies at a lake "L" have proved that there is quantitative relationship between the following two variables:

```
Variable "U" : Vumber of existing fishing craft per fishing Bite (water approach)
Variable "W" : Mumber of fishing craft eeen (aerial approach)
```


13.4.1 Formulation of the problem

During the year 1969 a number of statistical studies were conducted at lake "L" aiming to discover proper "control characteristics" which are of value at the design process of large scale sample surveys. In the surveys, among other things, the existing quantitative relationship between the above two variables, "U" and "W", was studied.

For survey operations the shoreline of the lake vas divided into a number of zones of equal size and one of them was selected as "control zone" - within the selected zone two frame aurveys (Fs's) were conducted. Fsi based on the "water approach" and FSa based on the "aerial approach". The table below gives the obtained results (example):

Lake "L", control zone, 1969

$\begin{gathered} \hline \text { Seriel no. of } \\ \text { fishing sites } \\ \text { found } \\ \hline \end{gathered}$	No. of fishing craft seenㄱ $-w-$	$\begin{gathered} \text { No. of existing } \\ \text { fishing craft } \\ -u- \end{gathered}$
1	6	10
2	7	10
3	12	20
4	5	5
5	25	40
6	20	30
7	6	10
8	4	6
9	5	8
10	14	20
11	7	11
12	20	30
13	15	20
14	6	10
15	21	30
16	6	10
17	10	15
18	4	5
19 20	4	10

1/ No. of fishing craft seen on the beach plus on water

13.4.2 The scatter diacran

The scatter diagran based on the data in the above table shows that there is a quantitative relationehip between the two variables "W", "U" and the straight ine appears to be a good fit to the eapirical data.

13.4.3 Linear regression equation u=f(v)

The established general equation is given by:
$u=a+b v$
Two pairs of corresponding values of "u" and "w" can be obtained from the valuea given in the table in section 13.4.1. For example:
when,
$v=20 \quad u=30$
$w=10 \quad u=15$
Substituting these in:
$u=a+b w$
$30=a+20 b$
(1)
$15=a+10 b$
(2)

Subtracting (2) from (1):
$15=10 b$
$b=1.5$
$a=0$
The equation is:
$u=1.5 w$
(3)

From the equation (3) estimates of the existing number of fishing craft per fishing site can be made for any number of fishing craft seen within the ilmits of observations shown on the chart.
13.4.4 The meaning of the estimated regression coefficient "b"

In the above example the value of the regression coefficient "b" was found equal to 1.5. This means that one unit of "fishing craft seen" corresponds to 1.5 of "existing fishing craft".

PART III: TECHNIQUES OF SAMPLING (ADVANCED COURSE)

14. BASIC IDEAS OF SAMPLING

14.1 Accuracy and precision

One of the stages in the "survey system" of sample survey ia the selection of the sample of the survey. As result of sample survey estimates are calculated on the characteristics of the surveyed population. An estimate calculated from the ampile is said to be precise if it is near the "expected value", that is, census count taken under identical experimental conditions. For example, if \bar{y} expresses the average sample value of given characteristic and m the corresponding expected value, the absolute precision of the estimate is given by:

$$
|d|=|\bar{y}-m|
$$

The calculated estimate may not necessarily be near the true value aimed at; that is, it need not be accurate. In our notation, if μ is the true value, the absolute accuracy of the estimate is given by:

$$
\left|d^{\prime}\right|=|\bar{y}-\mu|
$$

From the above discussion it is obvious that precision refers to closeness of a sample estimate to the expected value while accuracy refers to the closeness to the true value. Deviation between the expected value and true value occurs when the errors present in the data do not average to zero.

It should be noted that the expected value can be obtained from repeated applicaLions of the given sampling procedures. In the figure below (Figure l) there is a graphical explanation of the meaning of precision and accuracy of the samplestimate y.

Figure 1. Sampling distribution of the estimates

[^2]From the above discussion it is obvious that the level of precision of ample estimate depends on the spead of the sampling distribution, and this is convenientiy measured by its own standard deviation, i.e. the standard error of the estimate. If the sample statistic in question is the total value of a characteristic, then the relevant distribution is the "sampling distribution of the totaln, the relevant standard error the "standard error of the total"; if it is a proportion, the terms are "sampling distribution of proportion" and "standard error of proportion".

14.2 Sources of errors in sample surveys

It is important from a theoretical as well as a practical viewpoint to classify the various kinds of errors that arise in the survey system of a sample survey into the following two categories:

1. Sampling errors.
2. Non-sampling errors.

Specifically, in the sampling theory, the idea of sampling errors are introduced under the assumption that any measurement of the j th unit is correct for that unit (errors of measurement are ignored). Further, there is no dearth of examples to ahow that errors of measurement or observation, or errors of response, are present when a survey is carried out (or census is taken). In the domain of non-samping errors are included response errors, coverage errors, processing errors, etc. In the following sections the meaning of sampling errors (sections $2 a-2 d$) and non-sampling errors (sections 2e-2g) is discussed.

14.2a Bias of estimation

Text books and manuals of mathematical statistics discuss the bias which is attributed to the estimator of sample survey, i.e. the difference between the expected value and the true value. The ratio estimatel/ is a good example of biased estimate. In the ratio method the average (or expected value) of all the sample estimates is not necessarily equal to the parameter under estimation. For example, if the true quantity of total fish catch in given year at lake A is Y. 20000 metric tons and the relevant expected value based on ratio estimator is Yo $=21000$ metric tons, the ratio estimate is subject to bias of level B = Yo-Y = 21000 metric tons - 20000 metric tons = 1000 metric tons. In the rigure below (Figure 2) there is a graphical presentation of the meaning of bias of ratio estimate based on large samples:

Figure 2.

14.2 b Selection by means of incomplete sampling frames

Area sampling on the basis of maps is often used in the fisheries statistical surveys at inland vators in Africa. This procedure can give an unbiased sample if the sampling frames used are complete. The same situation exista when samifag units are selected on the basis of different lists and registers of the units. The use of incomplete lists often gives a strongly biased sample.

14.2c Hon-response

Like an incomplete sampling frame, there is danger of bian in data selection in which, from units chosen in the sample, it is not possible to get information on the surveyed characteristics. It is a risk of bias to base the results of the urvey on the respondents alone, since the non-respondents may be different from the reapondents. Sampling theory points the way to methods for dealing with non-response.
14.2d Other sources of sampling bias
(i) In systematic samplingl/ if the population consists of periodic trend, e.g. a simple sine curve, the effectiveness of the sample depends on the value of the spacing interval. Specifically, systematic selection can lead to bias if the sacing interval is an even multiple of the helf-period.
(ii) In the case of current sample surveys there is arisk of bias if the sampling frames used are not kept up-to-date.
(iii) The use of purposive samples or quota samples might lead to bias results.
14.2e Response errors

In the previous sections it has been indicated that, in getting at the optimum sampling design, it has been assumed that the job is to estimate from ample what would have been obtained from a complete census conducted under identical conditions. This statement of the problem avoids dealing with response errors, i.e. observation errors that are present in a census taken with equal care. The real problem in this regard is the measurement of response errors. speciricaliy, three pointa need consideration: (i) How response errors arise; (ii) Detection of response errors; and (iii) Estimation of response variance.
(i) How response errors arise Suppose a fisherman is asked about the total quantity of fish caughtin given day and that the response obtained is xgt a/. By using the "real measurement approach" the true quantity of rish caught is given by yg. From a sampling point of view, the response xgt obtained is a random variable 3/ with mean \bar{X}_{j} (average individual response) and variance og. If there are N fishermen at the given inland water place, we have the values:

$$
\bar{X}_{g=1}, \bar{X}_{j=2}, \cdots, \bar{X}_{j=N}
$$

which are the average individual responses to the question "quantity of fish caught in a given day". The average of $\overline{\mathrm{X}} \mathrm{j}$ i.e.:

$$
\bar{x}=\frac{1}{N_{j}} \sum_{=1}^{M} \bar{X}_{j}
$$

is called the "expected survey value" obtained under given experimental conditions of the survey. Further, the average of the true values yg is given by:

$$
Y=\frac{1}{M_{j}} \sum_{=1}^{M} y_{j}
$$

By using our notation, the difference:

$$
B^{\prime}=X-I
$$

1/See section 15.4
2/ Suffix t stands for the trials and suffix for the units in the population.
3/ The difference $x g_{t-\bar{k}}$ is called the "individual response deviation" and the. difference $\bar{X}_{j}-y_{j}$ is called the ${ }^{\prime}$ individual response bias".
is called the "bias of the survey" when the purpose is to estimate f, the average quantity of fish caught per fisherman/given day.
(ii) Detection of response errors Past experience has proved that the magnitude and direction of the difference betwen the true value and the value obtained from the survey depends upon the method used in the survey, the design of the source documeats and the human elements, i.e. the recorder and the respondent.

In the field of large scale statistical surveys detection of response erfors is obteined through the Quality Check Surveys (QCS's). The QCS's are intensive studies of relatively mall sampes and every effort is made in them to attain the highest level of efficiency possible. Through the QCS's the magnitude and direction of the "gross errors" are assessed i.e. the algebrical differences which are calculated by comparing the individual answers between the main survey and QCS, and the magnitude of "net error" is estimated i.e. the overall error remaining after any cancellation of gross errors has taken place. It should be noted that many of the individual response deviations may be very large. But this does not mean that the response bias of the urvey will necessarily be large. Some of the individual errors may be positive, some may be negative, and the response bias may be mall.
(iii) Estimation of response variance Response variance, like sampling variance, can be estimated from the obtained sample data. This can be illustrated with the following example: At Lake Volta (Ghana) a large fishing site harboured Nals fishing economic units. To get an estimate of the level of response variance of average catches per unit the following survey system was employed:

1. A sample of $n=30$ fishing economic units was selected on to-fishing day and fish catch information was taken (y) by using the "real measurement approach".
2. On day totl a sample of $n^{\prime}=100$ fishing economic units was selected (in the n^{\prime} units the sample of n units was included) and information was collected of fish catch on tofishing day (x) by using the "interview approach".

For the above example the estimators of total variance, sampling variance and reponse variance are given in the table below:

Source of variance	Estimators
1. Response variance	$\begin{aligned} s_{r}^{2}=\left(\frac{1}{n} \frac{1}{n},\right) s_{d}^{2}, \quad \text { where, } \quad s_{d}^{2} & =\frac{1}{n-1}\left(\sum_{i}^{n} d_{i}^{2}-\frac{\left(\sum_{i}^{n} d i\right)^{2}}{n}\right) \\ \text { and, di} & =y i-x i \end{aligned}$
2. Sampling variance	$s_{s}^{2}=\left(\frac{1}{n^{\prime}}-\frac{1}{N}\right) s_{y}^{2}$, where, $s_{y}^{2}=\frac{1}{n-1}\left(\sum_{i}^{n} y_{i}^{2}-\frac{\left(\sum^{2} y\right.}{}{ }^{2}\right)^{2}{ }^{2}$
3. Total variance	

It ahould be noted that in the field of large scale surveys control of response errors is achieved through a proper selection, training and apervision of the field personnel of the urveys, consistency checks of the completed questionnaires, reinterviews, etc.

14.21 Coverage, content errors

Frame Survey (FS) taking in inland vaters is big operation requiring the use of enumerators and other persons at various levels, transport boata, cars, etc. Due to the sheer sise of the several operations involved and the peculiarities of the arveyed population errors of different types are likely to creep in. In fs's there are two kinds of errors to be checked:

1. Coverse errors i.e. 1) omissions or erroneous inclusions of fishing sites, and 2) omissions or erroneous inclusions of fishing economic units within the fishing sites covered by the Frame Survey.
2. Content errors i.e. errors on the reports of the number of gear owned by the fishermen, number of gear fished. etc. (see section 14.2e).

An estimate of the sources of coverage errors and their magnitudes are calculated through the Coverage Check Surveysi/.
14.2 g Other sources of non-sampling bias

1. Editing errors: With the field part of the survey completed. the various stages of processing the material and the highly skilled task of analyaing it begin. It cannot be taken for granted that the data coming from the field are free of all errors. Incompleteness, inconsistency and inaccuracy in the completed questionnaires will strongly arfect the reliability of the obtained results if they are not checked at the editing stage of the survey system of the survey.
2. Coding errorg: Another source of bias is the errors arising in the codes of the surveyed characteristics. To avoid coding errors the coders must be practised on ample of data and the problems that arise are discussed to bring about uniformity and consistency in the procedure.
3. Recording and arithmetical errors: Arising at the stage When estimates of the surveyed magnitude are calculated and in the tabulation process, these errors strongly affect the level of reliability of the obtained results.
14.3 Mean Square Error (MSE)

The users of statistics are alwas interested in the question of the level of reliability of the results obtained from given sample survey. The index of the joint effect of bias and of randomerror is the Mean Square Error. Specifically, in the sampling theory estimators of MSE heve been produced for the following two cases:

1. MSE of statistics when response errors are ignored.
2. MSE of statistics when reaponse errors are token into account.

To define the MSE in the above case (1) we use the notation already established in the previous sections. For given statistic zin the sample (i.e. total, mean, proportion, etc.), let the expected value be m(m $m(z)$, where the operator E sands for the expected value), the standarderror of the estimate is σ_{2} and the variance of the statistic is:

$$
v(z)=\sigma_{z}^{2}
$$

1/ See: 1) section 5.3, 2) Frame surveys at Volta Lake, 8t.8./2, fio: 8F/GBA/10, March 1970 by O.P. Basigos.

If μ is the true value of the parameter under estimation, the bias is given by: B = $-\mu$

The formule for the MBE is given by:

$$
\begin{aligned}
M 8 z(z) & =\Sigma(z-\mu)^{2} \\
& =\mathbb{E}\{(z-m)+(m-\mu)\}^{2} \\
& =V(z)+B^{2} \\
& =V(z)\left\{1+\left(\frac{B}{\sigma_{z}}\right)^{2}\right\}
\end{aligned}
$$

From the above analysis it is obvious that if z is unbiased the variance and the Mean square Irror of the statistic vould coincide. of two estimators al and za the one giving the maller Mean Square Error around the parameter to be estimated will be preferfed.

In the case (2) the Mean Square Error of the statistic $\bar{x}=\frac{1}{n} s x g t$ (see section 14.2e) is given by:

$$
E(\bar{x}-I)^{2}=A+B+C+D
$$

Where:
$A=v\left(\frac{1}{n}\left[\left(x_{j t}-\bar{x}_{j}\right)\right]\right.$, is the response variance

- - $v\left(\frac{1}{n}\left[\left(\bar{x}_{j}-\bar{x}\right)\right]\right.$, is the sampling verience
c. $2 \operatorname{cov} \cdot\left(\frac{1}{n}\left[\left(x_{g t}-\bar{x}_{g}\right) \cdot \frac{1}{n}\left[\left(\bar{x}_{y}\right)\right), \begin{array}{c}\text { reflecte the correletione } \\ \text { between response and }\end{array}\right.\right.$ campling ceviations, and

D - ($\bar{x}-)^{2}$, is the equare of the response bies.
$14.4 \frac{\text { The applicetion of confidence iptervals to detect the bias (errors of }}{\text { necaurement are icmored) }}$
It has been pointed out that the bias caused by the samping can be detected through the examination of the organic atructure of the sample. It is sometimes possible to study the final effect of the bias by compering the sample estimates with the resulta of census urvey, provided thet ach information ia araileble, or with relerant applementary information.

Let us uee the following notation: gis the sample stetistic of n elements, the standard error of atatistic is σ_{g} and the value of the population parameter is 2 . The t-fold ralue of the standard error is the margin of error:

$$
\delta-t \sigma_{8}
$$

The probebility that the latervil git eevers stopulation parameter is:

$$
P(s-8<z<\varepsilon+8)
$$

In the case of bias the confidence iaterval dool not cever the population paraaeter at the given probability level. An faliestion of tho mapaituce of the blat of
the statistic can be obtained by comparing the ralue of z vith the estalished limite (lower, upper) of the confidence intervel.

14.5 Methods of de-biseing

In many cases fishery statisticians are asked to asess the eficiency of the sampling procedures of various sample surveys undertaken with the absence of an experienced designer. In most of the cases the selected samples are biesed. How can the results of the sampe urveys be improved by eliminating or at least reducing the bias? One solution to the problem is to design a new eurvey besed on heathy statistical principles. This solution is, however, very costiy and herdly provides practical solution to the problem. It is therefore adrisable not to chance the sucture of the semple and to try to get better results on the basis of the given biased sample. The sample bias can be diminished by using certain methods of de-biasing:

```
1. Bias of estimation can be eliminated by choosing the
                    proper estimator or increasing the size of the sample
                    or by using the method of stratification arter aelec-
                tion and weightinc with the real proportions of strata.
2. Bias by meane of incomplete sampling frames can be
                eliminated by introducing correcting factors in the
                estimation procedure of the survey.
                    3. In the case of non-response, we select amall sample
                from the sample of non-respondents and the sub-semple
                data are used in order to revise the cample estimates.
                From a sampling point of viev, the survey population
                composes of two sub-populetions or strata: respondents
                (N1) and non-respondents (N2), (N=N1+N2). Let ni be
                the number of sample respondents, while n2 units failed
                to respond. We take aub-sample of digerg Ing from
                non-respondents and collect information from thres unite.
                An estimate of the population mean is given by:
```

 \(\overline{\bar{y}}=\frac{1}{n}\left(n_{1} \bar{y}_{1}+n_{2} \bar{y}_{2}\right)\)
 where,
 $$
\bar{y}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} y_{1 j}, \bar{y}_{2}=\frac{1}{r_{2}} \sum_{m_{1}}^{r_{2}} y_{2 j}
$$

14.6 Costs of Fisheries Statistical surveys

With a large and increasing number of ample designsthrown up by the development of samping theory, the choice of near optimal design is far fromeas. fron eamp ling point of view, that design is to be chosen which yields required quantity of information at specified accuracy (precision) at minimum cost; or alternatively the design providing the required information at specified cost with meximun aceuracy (precision). However, other factors should also be taken into eccount at the proceac of designing a smple survey. In the field of fisheries statistics the time wich passes from the design of the surveys until the publication of the results strongly influences the utility of the obtained results. In the figure below (figure 3) there is e graphical representation of the reletionship between the time required ror obtaining the results and the utility of the results:

Figure 3.
Among the various arguments in favour of using ampling procedures is that the sampling method can often upply the required information with greater sped and at lover cost than complete enumeration. For this reason, information on the costs involved in sample arreys is of particular ralue for the development of the ample surveys within the countries and is also of help to other member countries. Since every operation means cost, an attempt is made to use simple, straightforward procedures, procedures which can be completed vithin the time schedules, and which take into account all aministrative requirements. In the figure below (Figure 4) there is a graphical representation of the rarious phases of the survey system of current Catch Assessment Survey (CAS) at inland vaters.

From ampling point of viev, two types of cost computation must be distinguished:

1. Pre-estimated cost i.e. calculation of the costs at the process of designing the survey.
2. Actual cost i.e. calculation of the costs after the completion of the survey.

Further, for optimum planning it is mostly necessary to determine the "costfunction". i.e. the function which indicates the quantitative relationship between cost and the sample aise of the urvey.

For a better presentation of the cost itens of acAs/, a twowney table is used. In the following table the first criterion of classification refers to the various phases of the survey systen of cas and the second criterion refers to the type of the cost iteme, i.e. one-time cost, eurrent fixed cost, current variable cost.

Figure 4.

The oost items of a ourrent CAs

1/Coverage Cheok Survoye might be condroted at this etege.

24.7 Interration of sanple aurvers

Modern sample urveys are becominc multipurpose in character in the sense that information is collected on hundreds of items belonging to different fields of enquiry and that the reaulta must be made arailable before they become out of date. In the research programe at inland vaters in Africa, the demand for data is normally atisfied through a series of different eurveys, i.e. Fishery statistical gurveys, Biological surveys, Limnological surveys, etc. While the various researah fields are covered by apecific research programmea it is very important to integrate the aurvey systen of the various surveys and the resources arailable. Integration implies greater efficiency and lower cost for the urvey covering the population under investigation. The main operational steps in which integration might be achieved are:

1. Integration at the sampling stage.
2. Integration of the field operations.
3. Integration of the pre-mechanical processing of data.
4. Integration of the mechanical processing of data.
5. Integration of the organiamtional aspects of the surveys.
6. TYPES OF SAMPLE DESIGN

15.1 Introduction

The scope of this chapter is to present in compact form a collection of the types of sample design used in fisheries statistics (inland waters) at the present time with indications involved in their application. It is hoped that the sampling methoda presented in this chapter with illustrations will make samping more efficient in the hands of the respective vorkers of this field.

15.2 Simple Random Sampling (SRS)

Assuming that there are N fish (apecies A) in a fish pond. If these units can all be distinguished from one another they can be denoted by:

$$
\text { Fish: lst, 2nd, 3rd, ... }, ~ J, \ldots, N^{t h}
$$

or, Unit: al, ą, a3, ... ag, ... , an, (j=1,2,... N)
Now the following question needs consideration: If N h how mandistinct samplesi/ of size $\quad=2$ can be drawn from the N units? The number of distinct samples is given by the combinatorial formula:

$$
\binom{n}{n}=\frac{n!}{n!(N-n)!}=\frac{4!}{2!2!}=6
$$

The six distinct samples of size n are given in the table below:

Sample	sample units
8_{1}	$\mathrm{a}_{1} \cdot 2_{2}$
S_{2}	a, ${ }_{3}$
8_{3}	2, 24
84	2, 23
8_{5}	22^{2}
86	23.2

I/ The same fish is not alloved to occur twice in the saple (sampling without replacement, wrp).

If the procedure of selection is uch that oach sample has an equal probability to be selected, the type of sampling is called simple Random sampling.

In practice, it is imposible to produce each time all the distinct amples of sise n and elect one of then. Usualiy simple random sample is drava unit by unit. The units in the population are numbered from 1 to 1 . A series of random numbers betreen 1 and is then drevn by means of table of randon numbersil. The units in the population which bear these numbers constitute the sample. It has been proved that this mothod produces simple random samples.

15.2.2 Entimation of the population mean and total (SRS)

Assuming that for each unit ag in the population is attached a variate value y_{j} for the characteristic (y). By using our notation the following magnitudes can be defined:
a: Population total: $Y=\sum_{j=1}^{N} y_{j}=y_{1}+y_{2}+y_{3}+\ldots+y_{N}$
b : Population mean: $\bar{F}=\frac{Y}{N}=\frac{1}{N}\left(y_{1}+y_{2}+y_{3}+\ldots+y_{N}\right)$
c: sample total: $\quad y=\sum_{j=1}^{n} y_{j}=\left(y_{1}+y_{2}+y_{3}+\ldots+y_{n}\right)$
d: samplemean: $\quad \bar{y}=\frac{y}{n}=\frac{1}{n}\left(y_{1}+y_{2}+\ldots+y_{n}\right)$
-: Estineted population total: $\overline{\mathbf{Y}}=\mathbf{M} \overline{\mathbf{y}}$
It has been proved that in aimple random ample the samplemean \bar{y} is an unbiased estimate of the population mean \bar{F}.

Fxample 1: A fish pond contains $N=1200$ fish. A simple random sample of $n=$ 40 fish was elected and their total weight was obtained (y $=2000 \mathrm{gr})$:

1. What is the total veight of fish in the population (eatimate)?
2. What is the estimated average weight per fish?

Bolution:

1. $\bar{y}=M \bar{y}=\frac{X_{n}}{n^{\prime}}=\frac{1200}{40} \times 2000 \mathrm{gr} .=60 \mathrm{~kg}$.
2. $\bar{y}=\frac{y}{z}=\frac{2000 \mathrm{gr}}{40}=50 \mathrm{gr}$.

15.2 .2 Bempling error of \bar{y}

It has been proved, that in imple random sampling (wrp) the variance of the sample mean is given by? :
(1) $V(\bar{y})=\frac{1}{n}\left(1-\frac{n}{n}\right) s_{y}^{2}=\left(\frac{1}{n}-\frac{1}{n}\right) s_{y}^{2}=\left(\frac{M-n}{n \pi}\right) s_{y}^{2}$
where s_{y}^{2} is the varience per unit in the population,

1/ The same number is not allowed to enter the sample more then once (sampling without replacenent). rable of randon numbera ia ciren in Appendix IIIa.
2/ In (1) the factor ($1-\frac{n}{T}$) $=\frac{H-n}{H}$ may be called the finite population correction (fpe), If 咱is sail, this fletor la close to unity.

$$
s_{y}^{2}=\frac{1}{n-1} \sum_{j=1}^{N}\left(y_{j}-\bar{Y}\right)^{2}=\frac{1}{n-1}\left(\sum_{j=1}^{N} y_{j}^{2}-\frac{\left.\left(\sum_{j=1}^{N} y_{j}\right)^{2}\right)}{N}\right)
$$

From the above formula (1) it is obvious that the rariance of the sample man depends upon the population variance and decreases as the ample are increases.

The standerd error of \bar{y} equals the equare root (positive) of the variance of \bar{y} :
(2) $s_{\bar{y}}=\sqrt{V(\bar{y})}=s_{y} \sqrt{\frac{1-n}{n N}}$

The meaning of $S_{\bar{y}}$: The standarderror of show the degree of concentration of the sample means arouhd the population mean (errors of measurement are ignored). If the value of $s_{\bar{y}}$ is small it implies that the probability of arge deviation from the population meah is small.

For $n>30$, the statiatic \bar{y} follows the normal distribution $N\left(P, S_{\bar{y}}\right)$. In uch a case there is a probability of 95 percent that the sample mean falls within the interval:
(3) $\overline{\mathrm{Y}}-1.96 \mathrm{~s}_{\overline{\mathbf{y}}}<\overline{\mathbf{y}}<\overline{\mathrm{Y}}+1.96 \mathrm{~s}_{\overline{\mathbf{y}}}$

Further, from the above inequality the confidence interval for f can be established ($P=95$ percent, large samples):
(4) $\overline{\mathbf{y}}-1.96 \mathrm{~s}_{\overline{\mathbf{y}}}<\overline{\mathrm{Y}}<\overline{\mathbf{y}}+1.96 \mathrm{~s}_{\overline{\mathbf{y}}}$

The standarderror of the sample men can be expreased as araction or percentage of the population mean. This magnitude is called the coefficient of variation of the sample mean, $C V(\bar{y})$. It expresses the relative preciaion of the statistic \bar{y} :
(5) $\quad \operatorname{CV}(\bar{y})=\frac{S_{y y}}{\bar{y}}$

$$
=\frac{S_{y}}{y} \sqrt{\frac{N-n}{n N}}=C v(y) \sqrt{\frac{N-n}{n N}}
$$

Where:

$$
C V(y)=\frac{S_{y}}{\bar{Y}} \text { : coefficient of variation in the population. }
$$

In practice S_{y}^{2} is hardly known. An unbiased estimate of S_{y}^{2} can be obtained by using the data of the selected sample:

$$
\begin{equation*}
\bar{s}_{y}^{2}=s_{y}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(y_{j-\bar{y}}\right)^{2}=\frac{1}{n-1}\left(\sum_{j=1}^{n} y_{j}^{2}-\frac{\left(\sum_{j=1}^{n} y_{j}\right)^{2}}{n}\right) \tag{6}
\end{equation*}
$$

An unbiased estimate of the rariance of the sampe men is given by:

$$
\begin{align*}
v(\bar{y}) & =\frac{1}{n}\left(1-\frac{n}{N}\right) s_{y}^{2} \tag{7}\\
& =\left(\frac{1}{n} \frac{1}{n}\right) s_{y}^{2}=\frac{n-n}{n N} s_{y}^{2}
\end{align*}
$$

The estimated standard error of \bar{y} is given by:
(8) $\quad=\sqrt{v(\bar{y})}=y \sqrt{\frac{1-n}{n \|}}$

The estimated coefficient of variation of \bar{y} is given by:
(9) $\operatorname{cr}(y)=\frac{\bar{y}}{\bar{y}}=\frac{8 y}{\bar{y}} \sqrt{\frac{N-n}{n N}}=\operatorname{cr}(y) \sqrt{\frac{\pi-n}{n N}}$
where, $c(y)=\frac{s y}{\bar{y}}$ estimated coefficient of variation in the population.
Also, the estimated confidence interval of is given by ($P=95$ percent, large samples):
(10) $\overline{\mathbf{y}}-1.96 \mathbf{z}_{\bar{y}}<\overline{\mathrm{Y}}<\overline{\mathrm{y}}+1.96 \mathrm{z} \overline{\mathbf{y}}$

Example 2: A Frame Survey (FS) was conducted at Lake A. The table below (Table 15.2.2.1) gives the total number of available gill nets per fishing site (y) covered by the survey ($\quad=72$ fishing sites covered by the FS). Operations needed:

1. Select a ample of $n=25$ fishing sites (SRS, wry).
2. Use the sample data and calculate the magnitudes s_{y}^{2}, $s_{y}, \operatorname{cr}(y), v(\bar{y}), e_{\bar{y}}, \operatorname{cr}(\bar{y})$.
3. Estimate the confidence interval of \mathcal{P}.
4. Calculate the population mean by using the data of the Frame Survey.
5. Calculate the absolute level of precision of the sample mean.

Table 15.2.2.1 Total number of gill nets available per fishing ste (y), F SLake A

Solution:

1. In the table below (rable l5.2.2.2) the selected ample is given.

Table 15.2.2.2 Selected sample of fishing sites

$\begin{aligned} & \text { Sample } \\ & \text { Ser.No. } \end{aligned}$	Gill nets available	Sample Ser.No.	Gill nets available	Sample Ser.iNo.	Gill nets availeble	Remarks
01	1860	11	790	21	152	
02	397	12	651	22	139	(SRS, wrp)
03	338	13	421	23	123	
04	221	1.4	375	2	119	
05	176	15	3.32	25	112	
06	15.1	10	297		y= 8132	
07	129	17	274			
08	124	18	257		$\underline{E} y_{i}^{2}=5$	660
09 10	112 203	19 20	200 176		$j=1{ }^{2}$	

2. The estimated magnitudes are:
$2.1 \mathrm{~s}_{\mathrm{y}}^{2}=\frac{1}{24}\left(5782660-\frac{(8132)^{2}}{25}\right)=97392$ gill nets ${ }^{2}$
$2.2 \mathbf{s}_{\mathbf{y}}=\sqrt{97392 \text { gill nets }{ }^{2}}=312.08$ gill nets
$2.3 \mathrm{cv}(\mathrm{y})=\frac{312.08}{325.28} \times 100=95.94$ percent
$2.4 v(\bar{y})=\frac{72-25}{25 \times 72} \times 97392=2543$ Gill nets ${ }^{2}$
$2.5 s_{\bar{y}}=\sqrt{2543 \text { gill nets }}=50.43$ Rill nets
$2.6 \mathrm{cv}(\overline{\mathrm{y}})=\frac{50.43}{325.28} \times 100=15.50$ percent
3. The estimated confidence interval of $Y(P=95$ percent, t-student):
325.28-2.064×50.43<q<325.2R+2.064×50.43 221.19 gill nets $<\bar{Y}<429.37$ gill nets
4. The calculated population mean is:
$Y=\frac{1}{N} \sum_{j=1}^{72} y_{g}=\frac{25767}{72}=357.87$ gill nets
5. The calculated absolute level of precision of the sample mean is:

$$
\left|d_{1}\right|=|325.28-357.87|=32.59 \text { gill nets }
$$

15.2.3 Sampling error of \bar{Y}

In section 15.2 .1 it is indicated that the estiated total of eurvey characteristic is given by:

$$
\overline{\mathbf{y}}=\mathrm{K}_{\overline{\mathbf{y}}}
$$

Therefore the variance of \bar{Y} is:
(11) $v(\bar{y})=n^{2} v(\bar{y})=\frac{N^{2} \frac{(N-n)}{n H} s_{y}^{2}=\frac{H(N-n)}{n} s_{y}^{2}, ~}{n}$

The tandard error of \bar{Y} is:
(12) $\delta_{\bar{Y}}=\sqrt{V(\hat{Y})}=8_{y} \sqrt{\frac{1(Y-n)}{n}}$

The coefficient of variation of $\overline{\mathbf{Y}}$ is:
(13) $\operatorname{cV}(\bar{Y})=\frac{S_{q}}{\bar{Y}}=\frac{N S_{Y}}{W \bar{Y}}=\frac{S_{Y}}{\bar{Y}}=\operatorname{CV}(\bar{y})$

The confidence intervel of Y is given by ($P=95$ percent, large samples):
(14) $\bar{Y}-1.968 \overline{\mathbf{Y}}<\mathbf{Y}<\bar{Y}+1.968_{\bar{Y}}$

Unbiased estimates of the above magnitudes (11-13):
The estimated variance of \bar{X} is:
(15) $\quad v(\bar{Y})=N^{2} v(\bar{y})=N^{2} \frac{(N-n)}{n N} y^{2}=\frac{N(N-n)}{n} y_{y}^{2}$

The estimated standard error of $\overline{\mathrm{Y}}$ is:
(16) E $\hat{Y}=\sqrt{v(\hat{Y})}=y \sqrt{\frac{\sqrt{1 /-n}}{n}}$

The estimated coefficient of variation of \bar{Y} is:

The estimated confidence interval of Y is ($P=95$ percent, large amples): $\hat{Y}-1.96 \mathrm{E} \hat{Y}^{<} \boldsymbol{Y}<\bar{Y}+1.96 \mathrm{E} \hat{\mathbf{Y}}$

Example 3: By using the data of Table 15.2.2.2 calculate $v(\bar{y})$, $\bar{y}, ~ c v(\bar{y})$. Egtimate the confidence interval of Y. Calculate the absolute level of precision of \hat{y} ($\mathbf{Y}=25767$).

Solution:
Estimated magnitudes:

1. Estimated variance of \bar{Y},
$v(\bar{Y})=\frac{M(N-n)}{n} y_{y}^{2}=\frac{72(72-25)}{25} \times 97392=13182981.12$ gil1 nets ${ }^{2}$
2. Estimated standard error of \bar{Y}.
${ }^{\mathbf{E}} \hat{\mathbf{Y}}=\sqrt{13182981.12 \text { gill nets }}=3630.84$ gill nets
3. Eatimated coefficient of variation of \bar{Y},
$\operatorname{cv}(\bar{Y})=\frac{3630.84}{23420.16} \times 100=15.50$ percent
where.
$y=72 \times 325.28=23420.16$ gill nets
4. Fstimeted confidence interval of Y ($P=95$ percent, $t-s t u d e n t$).
23420.16-2.064×3630. $84<Y<23420.16+2.064 \times 3630.84$
15926.11 gill nets<Y<30914.21 gill nets
5. Estimated absolute precision of \bar{Y},
$\left|d_{2}\right|=|23420.16-25767|=2346.84$ gill nets

15.2.4 Samplesize

An important problem arising in ample survey is the determination of the sise of the sample. The following are the principal steps involved in the choice of the sample size:

1. We must know what is expected to be achieved through the survey.
2. Some equation must be found connecting the sample size and the requirements specified in (1).
3. This equation will contain certain unknown quantities belonging to the population. These quantities must be estimated.

From the above formula (5) it is obvious that there is alationship between the size of the sample and the precision of g. Provided that CV(y) ia known (data of a previous survey) the required sample size for a given precision of vould be:
$\operatorname{cv}(\bar{y})=\operatorname{CV}(y) \sqrt{\frac{1}{n}-\frac{1}{N}}$
or, $\frac{C V(\bar{y})}{C V(y)}=\sqrt{\frac{1}{n}-\frac{1}{n}}$
if, $g=\frac{\operatorname{cy}(y)}{\operatorname{cv}(y)}$, then
$\frac{1}{g}=\sqrt{\frac{1}{n} \frac{1}{N}}, \quad$ and
(18)

$$
n=\frac{N_{g}{ }^{2}}{N+g^{2}}
$$

```
Example 4: A fish pond contains \(=1000\) fish (species A). A survey is planned to estimate the average weight per fish. How many fish should be selected to achieve a CV( \(\bar{y})=0.05\) (Note: Frome previous survey it was found that cv(y) = 30 percent).
```

$$
N=1000 \text { rish }, \quad g=\frac{0.30}{0.05}=6
$$

and,
$n=\frac{1000 \times 6^{2}}{1000+6^{2}}=34.7=35 \mathrm{rish}$

15.2.5 Estimation of proportions

We shall now consider the problem of estimating the proportion of populetion belonging to certain class A. Assuming that in given fish pond there are two kinds of fish, species A and species B. We vould like to estimate the proportion of species A in the population, through a imple random sample selected from the fish pond. If for every fish in the pond ve define the variate yg an if the fish belonge to class A (species A) and o othervise it is easy to see that the total number of fish belonging to class A in the pond is:
(19)

$$
\Delta_{A}=\sum_{j=1}^{m} y_{j}
$$

The proportion (P) of fish belonging to class A is:

$$
\begin{equation*}
P=\frac{1}{N_{j}} \sum_{=1}^{N} y_{j}=\frac{N_{A}}{N}, \quad\left(N=N_{A}+N_{B},\right. \text { total number of fish in the fish pond). } \tag{20}
\end{equation*}
$$

From the above discussion it is obvious that estimating p is equivalent to estimating a population mean, where the mean is defined in terms of the nev variate y taking up values 1 and 0 .

As a consequence, the following results are readily obtained. If aimple random sample (wrp) of n fish is selected from the fish pond and n_{A} and n_{B} are the number of fish in the sample belonging to species A and B respectively ($n=n_{A}+n_{B}$), an unbiased estimate of P is given by:
(21) $p=\hat{p}=\frac{n_{A}}{n}, \quad\left(q=\frac{n_{B}}{n}=1-p\right)$

The variance of p is:
$v(p)=\frac{1}{n}\left(1-\frac{n}{N}\right) S_{y}^{2}$
where:
and:
(22) $V(p)=\frac{(N-n)}{N n} \frac{N P Q}{N-1}=\frac{(N-n)}{N-1} \frac{P Q}{n}$

The standard error of p is:
(23) $S_{p}=\sqrt{\frac{N-n}{N-1}} \sqrt{\frac{P Q}{n}}$

The coefficient of variation of p is:
(24) $\quad C V(p)=\frac{S_{p}}{P}=\sqrt{\frac{N-n}{(N-1)_{n}}} \sqrt{\frac{Q}{P}}$

By using the sample data unbiased estimates of the above magnitudes (22, 23, 24) are obtained:

The estimated variance of p is:
(25) $\quad v(p)=\frac{(N-n)}{N n} \frac{n p q}{n-1}=\frac{N-n}{N} \frac{p q}{n-1}$

The estimated atandard error of p is:
(26)

$$
s_{p}=\sqrt{\frac{N-n}{N}} \sqrt{\frac{p a}{n-1}}
$$

The estimated coerficient of variation of p is:
(27) $\operatorname{cv}(p)=\frac{8 p}{p}=\sqrt{\frac{(\sqrt{1-n})}{(n-1)}} \sqrt{\frac{q}{p}}$

If n is large relative to n, the above formulae (22-27) are aimplified aa followa:

From the above formula $22 a$ it is obvious that for a given sample size $V(p)$ is maximum when $P=\frac{1}{2}$. Also, formula $24 a \operatorname{lndicates~that~the~coefricient~of~variation~of~}$ p is very high when P is very small. This means that a very large sample aize is needed in order to reduce the coefficient of variation of the estimate to reasonable limits, if the item under question is rare in the population (i.e. has amall p). In such a situation, this method becomes very expensive.

Example 5: A fish pond contains two kinds of fish (apecies A, specios B). A simple randomample of $n=220$ fish gave 55 fish belonging to class A (nA 55). Estimate the conridence limits for P in the population ($\quad 95$ percent).

Solution:

$$
\begin{aligned}
& p=\frac{n_{A}}{n}=\frac{55}{220}=0.25 \\
& s_{p}=\frac{1}{\sqrt{2} 24} \sqrt{0.25 \times 0.75}=0.0289 \\
& 0.25-1.96 \times 0.0289<p<0.25+1.96 \times 0.0289 \\
& 0.1928<p<0.3072
\end{aligned}
$$

15.2.6 Estimation for a subgroup

Quite often we make estimates for subgroups of population in addition to the entire population. For example, in deck samplingl/ we wish to know the quantity (number, weight) of fish caught by species in addition to the total fish catch. In such a case we are interested for subgroups of the population. The sizes of ubgroupare generally unknown. In our example, if a sample of fish, selected from the population under investigation (rish on deck), contains n_{g} fish of given species, these ng rish form random sample from the Ng_{g} in the subgroup. However, the number ng is not fixed like our n, but is random variable in the acnse that it is likely to vary from and ple to sample. For estimation purposes the following procedure can be used. Those units which do not belong to the subgroup are supposed to have a value or zero. It has been proved that an unbiased estimate of the subgroup mean is given by:
(28) $\quad \bar{y}_{g}=\frac{1}{n_{g}} \sum_{=1}^{n} y_{j}$

The variance of the eatimate being:
(29)

$$
v\left(\bar{y}_{g}\right)=\left\{\Sigma\left(\frac{1}{n_{g}}\right)-\frac{1}{\bar{n}_{g}}\right\} S_{G}^{2}
$$

As an estimate of the variance of \bar{y} ve may take:

[^3](30) $\quad v\left(\bar{y}_{g}\right)=\frac{1}{n_{g}}\left(1-\frac{n}{n}\right) s_{g}^{2}$
where:
$s_{6}^{2}-\frac{1}{n_{g}^{-1}}\left(\sum_{j=1}^{n_{8}} y_{j}^{2}-\frac{\left(\sum_{1}^{n_{g}} y_{j}\right)^{2}}{n_{g}}\right)$
For the uberoup total we have, estimated total:
(31) $\quad \dot{Y}_{G}={\underset{n}{n}}_{y_{G}}, \quad\left(y_{G}=\sum_{j=1}^{n} y_{j}\right)$

Estimated variance of the estimated total:
(32) $\nabla\left(\hat{Y}_{6}\right)=\pi^{2}\left(\frac{1}{n} \frac{1}{N}\right) s * 2$

Where:

$$
=n 2=\frac{1}{n-1}\left(\sum_{j=1}^{n} y_{j}^{2}-\frac{\left(\sum_{j=1}^{n} y_{g}\right)^{2}}{n}\right)
$$

Example 6: To get an estimate of the total number of gill nets owned by the trained fisherman (inland waters) in given country the following procedure was used. From the general registry of fishermen ($N=5000$ fishermen) a simple random sample of $n=100$ fishermen was selected. The sample gave $n_{g}=20$ trained fishermen. from each selected fisherman of group information vas selected of the total number of gill nets owned, variable y. The obtained sample magnitudes are:

$$
\sum_{j=1}^{20} y_{j}=52 \quad \sum_{j=1}^{20} y_{j}^{2}=140
$$

1. The estimated average number of gill nets owned per trained fisherman is,
$\bar{y}_{g}=\frac{52}{20}=2.6$ gill nets
2. The estimated variance per unit is, $s_{g}^{2}=\frac{1}{19}\left\{140-\frac{(52)^{2}}{20}\right\}=0.2526$ gill nets ${ }^{2}$
3. The estimated variance of \bar{y}_{g} is,

$$
\nabla\left(\bar{y}_{g}\right)=\frac{1}{20}\left(1-\frac{100}{5000}\right) \times 0.2526=0.012377 \text { gill nets }{ }^{2}
$$

4. The estimated coefficient of variation of \bar{y} is,

$$
\operatorname{er}\left(\bar{y}_{6}\right)=\frac{\sqrt{0.012371}}{2.6} \times 100=4.2 \text { percent }
$$

5. The estimated total number of gill nets owned by the trained fishermen is.

$$
\bar{Y}_{G}=\frac{5000}{100} \times 52=2600 \text { gill nets }
$$

6. Calculated value of *2 is.

$$
s=2=\frac{1}{99}\left\{140-\frac{(52)^{2}}{100}\right\}=1.148111 \text { nets }^{2}
$$

7. The estimated variance of \hat{Y}_{g} is,
$v\left(\hat{Y}_{g}\right)=5000^{2}\left(\frac{1}{100} \frac{1}{5000}\right) x 1.14=279300$ gill nets ${ }^{2}$
8. The estimated coefficient of variation of \bar{Y}_{g} is.

$$
\operatorname{cv}\left(\bar{Y}_{g}\right)=\frac{\sqrt{279300}}{2600} \times 100=20.33 \text { percent }
$$

15.3 Stratisied sampling

Stratification is method of making use of auxiliary information for improvinf the precision of the estimate. It has been seen that in simple random sampling the variance of the estimate (e.g. $V(\bar{y})$) depends, apart from the sample aize. on the variability of the characteristic in the population. If the population is heterogeneousi/ it may be possible, by using auxiliary information, to divide it into subpopulations (or strata! each of which is internally homogeneous. If aimple random sample (wrp) is taken fromeach stratum it should be possible to make a precise estimate of the strata averages. These estimates can then be combined into arecise estimate for the population. Since the main purpose or stratification is to acheve a better precision, number of problems arise for which solutions must be found i.e. a) Estimators for stratified sampling and their properties; b) allocation of the overall sample to the strata; c) How to construct strata and how many.

15.3.1 Estimation of population mean and total

The fish catch of an experimental fishing boat is divided into a numer of strata on the basis of, say, size of fish, thereby separating the very large ones, the medium

 A random sample of size ni is selected from theith atratum, the sample mean being \bar{y}_{i}. It is easy to see that an estimate of the population total:

$$
Y_{s t}=\sum_{i=1}^{k} N_{i} \bar{Y}_{i}
$$

is given by:

$$
(33)
$$

$$
\begin{equation*}
\hat{Y}_{z t}=\sum_{i=1}^{k} N_{i} \bar{y}_{i} \tag{33}
\end{equation*}
$$

where,

$$
\bar{y}_{i}=\frac{1}{n_{i j}} \sum_{=1}^{n_{i}} y_{i j}
$$

1/ Measuresents vary considerably fron ore unit to another.

Further, an estimate of the population mean is given by:
(3h) $\bar{y}_{s t}=\frac{\bar{y}}{\frac{1}{1}}=\frac{1}{Z_{1}} \sum_{i=1}^{k} n_{i} \bar{y}_{i}$
The variance of the estimated total isl:
(35) $v\left(\bar{y}_{i t}\right)=\sum_{i=1}^{k} m_{i}^{2} v\left(\bar{y}_{i}\right)-\sum_{i=1}^{k} N_{i}^{2}\left(\frac{1}{n_{i}} \frac{1}{N_{i}}\right) s_{i}^{2}$
$=\sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{1}} B_{i}^{2}$
where,.

$$
s_{i}^{2}=\frac{1}{M_{1}-1}\left(\sum_{j=1}^{\left.M_{i} y_{i j}^{2}-\frac{\left(\sum_{i=1}^{M_{i j}} y_{i j}\right)^{2}}{M_{i}}\right), ~(n)}\right.
$$

The estimated variance of $\overline{\mathrm{Y}}$ is:

$$
\text { (36) } \begin{aligned}
v\left(\dot{y}_{s t}\right) & =\sum_{i=1}^{k} n_{i}^{2} v\left(\bar{y}_{i}\right)=\sum_{i=1}^{k} n_{i}^{2}\left(\frac{1}{n_{i}} \frac{1}{n_{i}}\right) s_{i}^{2} \\
& =\sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}} i_{i}^{2}
\end{aligned}
$$

where,
$n_{i}^{2}=\frac{1}{n_{i}-1}\left(\sum_{j=1}^{n_{i}} y_{i j}^{2}-\frac{\left(\sum_{i=1}^{n_{i}} y_{i j}\right)^{2}}{n_{i}}\right)$
If the sampling fraction $\left(\frac{n_{1}}{N_{1}}\right)$ ia negligible in all strata the above formulae
$(35 a) v\left(\bar{y}_{s t}\right)=\sum_{i=1}^{k} \sum_{i}^{2} s_{i}^{2}$
(35b) $v\left(\bar{y}_{8 t}\right)=\sum_{i=1}^{k} \frac{\eta_{i}^{2}}{n_{i}^{2}} i_{i}^{2}$
The variance of the estimated mean is:
(37) $v\left(\bar{y}_{z t}\right)=\frac{1}{n^{2}} \sum_{i=2}^{k} n_{i}^{2} v\left(\bar{y}_{i}\right)$
$=\frac{1}{\pi^{2}} \sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}} e_{i}^{2}$

2/ It should be noted that with stratified sampling, there is in general no single finite population correction factor, the factors entering individually into each stratum.

The estimated variance of \bar{y}_{st} is:
(38) $V\left(\bar{y}_{z t}\right)=\frac{1}{N^{2}} \sum_{i=1}^{k} N_{i}^{2} v\left(\bar{y}_{i}\right)$

$$
=\frac{1}{N^{2}} \sum_{i=1}^{k} \frac{N_{i}\left(n_{i}-n_{i}\right)}{n_{i}}{ }_{i}^{2}
$$

38)

If the sampling fraction ($\frac{n_{i}}{N_{i}}$) is negligible in all strata the above formulae (37. are simplified as follows:

$$
\begin{aligned}
& (37 a) v\left(\bar{y}_{E_{t}}\right)=\sum_{i=1}^{k} w_{i}^{2} \frac{S_{i}^{2}}{n_{i}}, \quad\left(w_{i}=\frac{N_{i}}{1}\right) \\
& (38 a) \quad v\left(\bar{y}_{s t}\right)=\sum_{i=1}^{k} w_{i}^{2} \frac{i_{i}^{2}}{n_{i}}
\end{aligned}
$$

Example 7: The table below gives the number of landings (ne 25 lending on day do at given fishing site along with their catches in kg. Estimate the average catches per landing and total catches by: a) selecting ample randomeaple of size $=10$ landings; b) A stratified random sample f oise n 10 $\left(n=\sum_{i=1}^{k=5} n_{i}, n_{i}=2\right.$ landings).

a) Simple Random Sample

Sample data, kea (3, 31, 22, 33, 43, 21, 24, 35, 5, 12)

1. Sample total $y=\sum_{j=1}^{10} y g=229$
2. Sample mean $\bar{y}=\frac{\eta}{n}=22.9 \mathrm{~kg} / \operatorname{landing}$
3. Estimated total landings $\bar{Y}=\mathrm{H}_{\mathrm{m}}=25 \times 22.9=572.5 \mathrm{LE}$
4. Variance of the estimated total.
$V(\bar{y})=\frac{N(H-n)_{8}^{2}}{n}=\frac{25 \pi 15}{10} \times 210.4=7890 \mathrm{ks}^{2}$
5. Coefficient of variation of \dot{I}.
$C V(\bar{Y})=\frac{\sqrt{7890}}{572.5}=25.51$ percent

b) Stratified Sample

Sample data (kg) by stratum:

Stratum-1:	$(1,5)$
Stratum-2:	$(11,13)$
Stratum-3:	$(25,21)$
Stratum-4:	$(32,35)$
8tratum-5:	$(43,45)$

1. Calculated magnitudes by stratum:

Stratum	n_{i}	n_{i}	\bar{Y}_{i} $(k g)$	\bar{y}_{i} $(k g)$	s_{i}^{2} $\left(k g^{2}\right)$	s_{i}^{2} $\left(k g^{2}\right)$
str:1	5	2	3.0	3.0	2.5	8
Str:2	5	2	13.0	12.0	2.5	2
Str:3	5	2	23.0	23.0	2.5	8
Str: 4	5	2	33.0	33.5	2.5	4.5
Stri:5	5	2	43.0	44.0	2.5	2

2. Estimated population total:

$$
\bar{y}_{s t}=\sum_{i=1}^{5} N_{i} \bar{y}_{i}=(5 \times 3)+(5 \times 12)+(5 \times 23)+(5 \times 33.5)+(5 \times 44)=577.5 \mathrm{~kg}
$$

3. Eatimated population mean:
$\bar{y}_{g t}=\frac{\bar{y}}{25}=\frac{577.5}{25}=23.1 \mathrm{~kg} / 2 \mathrm{anding}$
4. Variance of the estimated total:
$V\left(\bar{Y}_{B t}\right)=\sum_{i=1}^{5} \frac{N_{i}\left(N_{i}-n_{i}\right)}{n_{i}} s_{i}^{2}=93.75 \mathrm{~kg}^{2}$
5. Coefficient of variation of \bar{Y} :
$C V\left(\hat{y}_{t}\right)=\frac{\sqrt{23.75}}{577.5}=1.7$ percent
15.3.2 Allocation of the total sample to the strata

We now conaider the problem of the allocation of the total sample size n to the different strata. It should be noted that the precision of the estimate depends heavily on the allocation made. Provided that the strata have already been constructed, there are two methods by which the total sample can be distributed among the strata

1. Proportional allocation.
2. Optimum allocation.

1. Proportional allocetion

Proportional allocation is used in practice vhen auxiliary information on atrata variances is not available. This method gives the most efficient estimates (i.e. those with the sallest sampling variance) for a given sample size (n), provided all the vithin-stratum variances are equal. In proportionel allocation the sampling fraction is constant from stratum to stratum:
(39) $\frac{n}{N}=\frac{n_{1}}{N_{1}}=\frac{n_{2}}{N_{2}}=\ldots=\frac{n_{i}}{N_{i}}=\ldots=\frac{n_{k}}{N_{k}}$

$$
\text { or, } \quad n_{i}=\frac{N_{i}}{N}=n w_{i}, \quad\left(w_{i}=\frac{N_{i}}{N}\right)
$$

This allocation of the sample size gives self-weighting ample. If many items are involved, self-weighting estimates are of great interest. It is easy to see that the estimate of the population total takes a simple form:
$\tilde{y}_{p r}=\sum_{i=1}^{k} N_{i} \bar{y}_{i}=\sum_{i=1}^{k} \frac{N_{i}}{n_{i}} y_{i}, \quad\left(y_{i}=\sum_{j=1}^{n} y_{i j}\right)$
If, $\frac{N_{i}}{n_{i}}=c=\frac{N}{n}, \quad$ then:
(40) $\dot{y}_{p r}=c \sum_{i=1}^{k} y_{i}=c \sum_{i=1}^{k} \sum_{j=1}^{n i} y_{i j}$

With proportional allocation the variance of \bar{Y} iss
(LI) $v\left(\bar{Y}_{p r}\right)=\sum_{i=1}^{k} \frac{N_{i}^{2}}{n_{i}}\left(1-\frac{n_{i}}{n_{i}}\right) s_{i}^{2}$

Or:
(42) $\quad V\left(\bar{y}_{p r}\right)=\frac{N-n}{n} \sum_{i=1}^{k} N_{i} s_{i}^{2}$

The estimated variance of population total is:
(43) $\quad v\left(\bar{Y}_{p r}\right)=\frac{N-n}{n} \sum_{i=1}^{k} N_{i} e_{i}^{2}$

If the sampling fraction $\left(\frac{n_{i}}{N_{i}}\right)$ is negligible in all strata the above formulae (42,
(42a) $v\left(\bar{Y}_{p r}\right)=\frac{N}{n} \sum_{i=1}^{k} N_{i} S_{i}^{2}=c \sum_{i=1}^{K} N_{i} S_{i}^{2}$
(43a) $v\left(\bar{Y}_{p r}\right)=\frac{N}{n_{i}} \sum_{=1}^{k} N_{i} s_{i}^{2}=c \sum_{i=1}^{k} H_{i} s_{i}^{2}$
The estimated population mean is:
(44) $\overline{\mathbf{y}}_{\mathrm{pr}}=\frac{1}{\mathbf{N}} \sum_{i=1}^{k} \boldsymbol{N}_{\mathrm{i}} \overline{\mathbf{y}}_{i}=\frac{1}{n_{i}} \sum_{=1}^{k} \sum_{j=1}^{\mathrm{n} i} \mathbf{y}_{i j}$

The variance of $\overline{\mathbf{y}}_{\mathrm{pr}}$ is:
(45) $\quad v\left(\bar{y}_{p r}\right)=\frac{N-n}{n N} \sum_{i=1}^{k} W_{i} S_{i}^{2}$

The estimated variance of $\bar{y}_{p r}$ is:
(46) $\quad v\left(\bar{y}_{p r}\right)=\frac{n-n}{n \sum_{i}} \sum_{i=1}^{k} w_{i} i_{i}^{2}$

If the sampling fraction ($\frac{n_{i}}{H_{i}}$ is negilgiblein all etrata the above formulae (45,
46) are simplified as follow:

$$
\begin{aligned}
& (45 a) v\left(\bar{y}_{p r}\right)=\frac{1}{n_{i}} \sum_{=1}^{k} w_{i} s_{i}^{2} \\
& (46 a) v\left(\bar{y}_{p r}\right)=\frac{1}{n_{i}} \sum_{i=1}^{k} w_{i} z_{i}^{2}
\end{aligned}
$$

Example 8: The registered fishing economic units (rev's) at Lake a heve been crouped into three etrata by taking as a criterion of stratification the kind of fighing boat used. In order to get estimates on the number of gill nets ovned (y) by the fishermen, a random sample of fiv's vas selected (stratified sample - proportional allocation). The table belov shova the unita in the population and in the sample on a stratum basis and the gample totals of the characteristic under investigation. Estimate the confidence intervale of Y and \bar{P} respectively ($P-95$ percent).

Strata of FIJ'。	Number of Ehut			y_{1}	.$_{i}^{2}$	$\mathrm{N}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}^{2}$	$W_{i} m_{i}^{2}$
	$\begin{gathered} P_{0 p u} \\ N_{i} \end{gathered}$	$\omega_{i}\left(x_{1}\right)$	$\begin{gathered} \text { Semple } \\ n_{i} \end{gathered}$				
Stri 1	400	50.0	50	300	6	2400	3
Str: 2	240	30.0	30	400	10	2400	3
8tr: 3	160	20.0	20	300	20	3200	4
TOTAL	N.800	100.0	$n=100$	$\left(\sum_{i}^{2000} \sum_{j} y_{i j}\right)$		$\begin{gathered} 8000 \\ \left(\sum_{i}=\sum_{i}\right) \end{gathered}$	$\left.\left(\sum_{i}^{10} w_{i}^{2}\right)_{i}\right)$

1. Eatimated population total:
$\bar{y}_{p r}=\frac{800}{100} \times 1000=8000$ sill nete
2. Fstimated variance of the estimated totel:
$r\left(\bar{Y}_{p r}\right)=\frac{800-100}{100} \times 8000=56000$ Eill nets ${ }^{2}$
3. Satimeted standard error of $\dot{Y}_{\text {pr }}$:
${ }^{5} \hat{\mathbf{Y}}_{\mathrm{pr}}=\sqrt{56000}=236.64$ Eill nets
4. Estimated confidence interval of Y ($P=95$ percent):

8000-1.96×236.64<Y<8000+1.96×236.64
T358.19 cill nete<Y<8461.81 cill neta
5. Eatimated population mean:
$\bar{y}_{p r}=\frac{1000}{100}=10$ sill nete
6. Estimated variance of $\overline{\mathbf{y}}_{\mathrm{pr}}$:

$$
V\left(\bar{y}_{p r}\right)=\frac{800-100}{100 \times 800} \times 10=0.875 \text { gill nets }{ }^{2}
$$

7. Estimated etenderd error of $\overline{\mathbf{j}}_{\mathrm{pr}}$:
${ }^{3} \boldsymbol{y}_{\mathrm{pr}}=\sqrt{0.875}=0.9354$ cill nete
8. Estimated confidence interval of \mathcal{P} ($P=95$ percent):
$10-1.96 \times 0.9354<9<10+1.96 \times 0.9354$
8.17 Eill neta< <11.83 cill nete

2. Optimus allocation

If the vithin-atratum variances differ greatly from one statum to another, the method of proportional allocation no longer gives the best posaible estimates. In this situation the samping frection for any stratum should be taken proportional to within-stratum standard deviation. Thus:
(47) $\quad n_{i}=n\left(\frac{n_{i} s_{i}}{\sum^{n_{i} s_{i}}}\right)$

This allocation (optimum allocation) gives the amellest variance for the estanted mean (total) for aixed total sample sise n.

The variance of the estimated total is:
(48) $V\left(\dot{Y}_{o p t}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} N_{i} s_{i}\right)^{2}-\sum_{i=1}^{k} N_{i} s_{i}^{2}$

The estimated variance of the estimated total is:
(49) $\quad v\left(\bar{Y}_{\text {opt }}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} n_{i} s_{i}\right)^{2}-\sum_{i=1}^{k} n_{i}{ }_{i}^{2}$

$(48 a) \quad V\left(\bar{y}_{o p t}\right)=\frac{1}{n}\left\{\sum_{i=1}^{k} N_{i} s_{i}\right)^{2}$
$(49 a) \quad v\left(\bar{Y}_{o p t}\right)=\frac{1}{n}\left\{\sum_{i=1}^{k} N_{i} \varepsilon_{i}\right)^{2}$
The variance of the estimeted men is:
(50) $V\left(\bar{y}_{\text {opt }}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} w_{i} s_{i}\right)^{2}-\frac{1}{n_{1}} \sum_{i=1}^{k} w_{1} s_{i}^{2}$

The estimated variance of the estimated mean is:
(51) $\quad v\left(\bar{y}_{o p t}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} W_{i} s_{i}\right)^{2}-\frac{1}{W_{i}} \sum_{i=1}^{k} W_{i} s_{i}^{2}$

If the sampling fraction ($\frac{n}{H_{1}}$) is negligible in all strata the above formulae (50, 51) ere simplified es follows:
(50a) $\dot{\nabla}\left(\bar{y}_{o p t}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} W_{i} s_{i}\right)^{2}$
(51e) $v\left(\bar{y}_{\text {opt }}\right)=\frac{1}{n}\left(\sum_{i=1}^{k} w_{i} s_{i}\right)^{2}$
Example 9: By using the data of example 8, estimate the optimum ni in the strata $(n=100)$.

Example 10: The table below fives the sample totals by stratum for the optimum allocation of n. Estimate the confidence intervals of Y and \quad respectively (pegs percent).

1. Estimated population total:
$\dot{Y}_{\text {opt }}-8800$ sill nets
2. Estimated variance of the estimated total:
$\nabla\left(\bar{x}_{o p t}\right)=\frac{1}{100} \times 6013481-8000=52134.81 \operatorname{cil}_{11}$ net ${ }^{2}$
3. Estimated confidence interval for Y :

8800-1. $96 \times 228.33<Y<800+1.96 \times 228.33$
8352 gill netser<9247 gill nets
4. Estimated population mean:
$\bar{y}_{\text {opt }}=\frac{8800}{800}=11$ gil1 nete
5. Sstimated variance of the population mean:
$v\left(\bar{y}_{\text {opt }}\right)=\frac{1}{800^{2}} 52134.81=0.8146$ g111 nets ${ }^{2}$
6. Estimated confidence interval of \mathbb{P} :
$11-1.96 \times 0.902<\bar{Y}<11+1.96 \times 0.902$
9.23 gill nets< $\bar{\gamma}<12.77$ gill neta

15.3.3 Some properties of the estimetors

It has been stated that one of the basic considerations involved in the use of stratification is the echievement of better precision for the esimated magnitudes. In this section ve vill describe in what vay the gain due to stratification is achieved.

In the cases of simple random sample and stratified random ample vith proporional and optimum allocation the variances of the estimated means are denoted by:
$V_{r a n}$: Simple random sample
$\mathbf{V}_{p r}$: Stratiried sample/proportional allocation
Vopt : Stratiried samploptimum allocation.
If the total sample size is fixed and the ampling fraction (nif is negligible in all strata it could be proved that the following equations are

$$
\begin{equation*}
v_{r a n}=v_{p r}+\frac{1}{n_{i}} \sum_{1}^{k} \frac{n_{1}}{n}\left(Y_{i}-Y\right)^{2} \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
v_{p r}=v_{o p t}+\frac{1}{n_{i}} \sum_{i=1}^{k} \frac{n_{i}}{N}\left(s_{i}-\bar{B}\right)^{2} \tag{53}
\end{equation*}
$$

Where:

$$
S=\sum_{i=1}^{k} n_{i} S_{i}
$$

The above equation (52) hows that proportional allocation vould be very beneficial if the strata arerages \boldsymbol{F}_{i} differ greatiy from one etratum to another.

Equation (53) shove that optimum allocetion vould be rery beneficial inded if the etrata variances 8 ? differ greatiy from one atratum to another.

In the figure below there í grephicel presentation of the level of precision for the population mean achieved through the sampling methods of aimple randon eaple. stratified-proportional. stratified-optimum and for a fixed samle eize n (cas Volta Lake):

15.3.4 Estimation of the sample size

In atratified ample the principal stepa involved in the choice of the ample size are:

1. We must know what is the expected precision of the estiate -.g. Vo: expected variance of $\bar{y}_{s t}$.
2. Fetimation of the vithin-strate variances.
3. Determining the method of allocating the total ample size to the strata.

Yo in the cese of proportional allocation the required total ample size for given Vo is:
(54)

$$
n=\frac{\sum_{i=1}^{k} W_{i} s_{i}^{2}}{V o+\frac{1}{N} \sum_{i=1}^{k} w_{i} s_{i}^{2}}
$$

In the case of optimum allocation the required total maple size for given vo is:
(55)

$$
n=\frac{\left(\sum_{i=1}^{k} w_{i} s_{i}\right)^{2}}{V_{0}+\frac{1}{N_{i}} \sum_{i=1}^{k} w_{i} s_{i}^{2}}
$$

If the sampling fraction $\left(\frac{n_{f}}{N_{i}}\right)$ is neglicible in all atrata the above formulee (sh,
55) are simplified as follova:

$$
\begin{aligned}
& (54 a) \quad n=\frac{1}{V o_{i}} \sum_{i=1}^{k} W_{i} s ? \\
& (55 a) \quad n=\frac{1}{V o}\left(\sum_{i=1}^{k} W_{i} s_{i}\right)^{2}
\end{aligned}
$$

Exemple 12: at Lake A the active fishing economic units have been allocated into four strate by taking into account the kind of fishing boet used (dug-out canoe, plankcanoe, mall plank-boat, large plank-boat). Within each atratum information is available on the variance per unit of the variate $(y)(y)$: total number of gill nets used by FEU\}. How many FiU's should be selected to achieve an eatimate of the average number of cill aete used per FEU vith coefficient of variation of 5 percent calculations for the aise of n mould be made for the foliowing cases:

1. Proportional allocation
2. Optimum allocation.

$c v(\bar{y})=\frac{\sqrt{V(\bar{y})}}{\bar{y}}=0.05$
or:
$V o=V(\bar{y})=(0.05 \times \bar{Y})^{2}$
If the estimated $\bar{y} \approx 12$, then:
$\bar{v}_{0}=0.0025 \times 144=0.36$
In the case of proportional allocation:
$n=\frac{12.8}{0.36+0.32}=\frac{12.8}{0.68}-29 \mathrm{PEU}=$
In the case of optimum allocation:
$n=\frac{(3.3)^{2}}{0.36+0.32}=\frac{10.89}{0.68}=16 \mathrm{FEU} \cdot \mathrm{s}$
15.3.5 Estimation of proportions

In wry simple random samples of size $n_{i} \sum_{i=1}^{n} n_{i}=n$, within strata, an unbiasedeati.
mate of the population proportion P is given $i=1$ by:
(56) $\quad p_{s t}=\frac{1}{N_{i}} \sum_{i=1}^{k} N_{i} p_{i}=\sum_{i=1}^{k} W_{i} p_{i}$

Where:

$$
\left(w_{1}=\frac{w_{i}}{w_{1}}\right)
$$

The variance of Ps_{s} is:
(57) $V\left(p_{s t}\right)=\frac{1}{n^{2}} \sum_{i=1}^{k} \frac{\eta_{i}\left(n_{i}-n_{i}\right)}{n_{i}} s_{i}^{2}$

Where:

$$
g_{i}^{2}-\frac{\Xi_{i} P_{i} Q_{i}}{\Pi_{i}-1}
$$

The estimated variance of pat is:

$$
\begin{equation*}
v\left(p_{s t}\right)=\frac{1}{n^{2}} \sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}}{ }_{i}^{2} \tag{58}
\end{equation*}
$$

Where:

$$
s_{i}^{2}=\frac{n_{i} p_{i} q_{i}}{n_{i}-1}
$$

If $\|_{i} / H_{i}-1$ can be taken as unity, the above formula (57) can be amplified as follows:

$$
\text { (57a) } V\left(p_{s t}\right)=\frac{1}{N^{2}} \sum_{i=1}^{K} \frac{N_{i}\left(N_{i}-n_{i}\right)}{n_{i}} P_{i} Q_{i}
$$

From the above formula (57a) it is obvious that the variance of pat depends on the product P_{i} and $Q_{i}=\left(1-P_{i}\right)$. The product is mallif P_{i} is near to zero or to unity. Thus figher precision cen be achieved if the strata can be formed in uch a way that units belonging to the class under investigation (for which the proportion is sought) can be allocated to the same stratum.

In atratified sample with proportional allocation ($n_{i}=n^{\frac{M_{1}}{N}}$) the estimator of the variance of the proportion is:
(59)

$$
V\left(P_{s t}\right)=\frac{N-n}{N n}\left[\frac{N_{i}}{N} \frac{N_{i} P_{i} Q_{i}}{N_{i}-1}=\frac{N-n}{N n}\left[W_{i} P_{i} Q_{i}\right.\right.
$$

It has been indicated that if $1 \approx N_{i} / N_{i}-1$, then, $S_{i}^{?}=P_{i} Q_{i}$. In ach a case the optimum sample size n_{i} is given by:

$$
\begin{equation*}
n_{i}=n \frac{N_{i} \sqrt{P_{i} Q_{i}}}{\left[n_{i} \sqrt{P_{i} Q_{i}}\right.} \tag{60}
\end{equation*}
$$

Example 12: At a given inland water place the registered fishermen have been grouped into three strata by taking as criterion of atratification their place of residence. In order to estimate the proportion of fishermen owners of boats, ample of $n=200$ fishermen was selected from the registry. The table below provides the sample values of p_{i} of the fishermen owners of fishing boats. Estimate the confidence interval for $P(P=95$ percent).

Ooographical utrata	Number of fishormen in the popular		N_{i}	p_{i}	$W_{i} p_{i}$	$s_{i}^{2}{ }^{1 /}$	$\frac{N_{i}\left(N_{i}-n_{i}\right)}{n_{i}} s_{i}^{2}$
Stre 1	1200	50.0	60	0.70	0.350	0.2136	4870
Str: 2	800	30.0	36	0.75	0.225	0.1929	3275
Stis 3	400	20.0	24	0.86	0.172	0.1256	787
TOTAL	Y=2400	100.00	$\mathrm{n}=120$		0.747		8932

[^4]Estimated population proportion:

$$
\begin{gathered}
P_{s t}=\sum_{i=1}^{K} W_{i} p_{i}=0.747 \\
\text { Calculated variance of } p_{s t}: \\
V\left(p_{s t}\right)=\frac{1}{(2400)^{2} \times 8932=0.00155} \\
\text { Calculated confidence interval of } P:
\end{gathered}
$$

$$
\begin{aligned}
& 0.747-1.96 \times 0.0394<P<0.747+1.96 \times 0.0394 \\
& 0.6698<P<0.8542
\end{aligned}
$$

15.3.6 X-proportional allocation

In section 15.3 .2 the allocation of the total ample size the strata vas made by using the N-proportional allocation. If measures of the control veriable (x) are available for all units in the population, the sampleises of nimay bound at a proportion of X_{i} :

$$
\text { (61) } \quad n_{i}=\frac{x_{i}}{x}
$$

Where:

$$
x_{i}=\sum_{j=1}^{N_{i}} x_{i j}, \quad x=\sum_{i=1}^{k} \sum_{j=1}^{N_{i}} x_{i j}
$$

This allocation is called the X-proportional allocstion. The variance of \hat{Y} is given by:
(62) $\quad v_{x-p r}=\frac{n}{n_{i}} \sum_{=1}^{k} \frac{n_{i} s_{i}{ }^{2}}{X_{i} / \bar{X}}$

15.3.7 Construction and number of strata

With the construction of strata the ideal situation is that in which the distribution of the control variate is known. In auch a case strata are formed by cutting up the distribution at suitable points. In the absence of this information the next best thing is the frequency of some other quantity that is highly correlated with the control variable. It should be noted that with skev populations in which amall proportion of the units accounts for a large proportion of the total (of y) a practical solution to the problem is to take the largest unite into the eample vith certainty and select a sample from the rest.

As far as the number of atrata is concerned, at firat oight the anover is that multiplicity of strata would improve the preciaion of the estimates. This is one reason that the survey statistician favours the use or a large number of strata. Multiplication of atrata, beyond a reasonable number. is attended by some disadrantages, i.e. the cost and time of procesaing the data should be increased considerably.

15.4 8rstenatic sempling

Suppose fish pond containg fish, numbering from 1 to . To select ample of n units the folloving procedure can be used:

```
1. We calculate the pacing interval \(z=\frac{1}{n}\)
2. We select unit of random from the first units (jth elected unit)
3. The semple contains the units vith serial numbers in the populetion, \(j, j+2, j+2 z, \ldots, j+(n-1) z\).
From the above analyis it is obvious that the first selected unit determines the whole sampl/. This type of sampe has been calied an every gth syetessic sampe (vith the \(z\) bing the pacing interval).
It bas been proved that in syetematic sampling with specing interval z, unbiased estimate of the population mean is given by:
```

$$
\begin{equation*}
\bar{y}_{g}=\frac{y_{g}}{n}=\frac{1}{n} \sum_{j=1}^{n} y_{g} \tag{63}
\end{equation*}
$$

Where suffix stand for the selected systematic sample (s. $\quad 1,2, \ldots, 2)$. The variance of the etimated mean is:
(64)

$$
v\left(\bar{y}_{s}\right)=\frac{1}{2} \sum_{s=1}^{z}\left(\bar{y}_{8}-\bar{Y}\right)^{2}
$$

The above formula (64) shows that best results will be achieved if the variability within clusters is very high, i.e. the clusters are as heterogeneous as posible. It is esy to show that the variance of the sotematic sampe mean can also be written as

$$
\begin{equation*}
v\left(\bar{y}_{s}\right)=\frac{s^{2}}{n}\left\{\left(1-\frac{1}{1}\right)+(n-1) \rho_{s}\right\} \tag{65}
\end{equation*}
$$

where ρ_{g} is the correlation coefficient between units in the same sytematic sample (intraciuster correlation coefficient). From formula (65) it is obvious thet positive correlation between units in the same syetematc sampe increases the variance of estimate.

In practice, however, when we have reason to believe that the listing of units in the popuiation can be considered to be random, the formula for estimating the variance of \bar{y} for simple random sample (wrp) is epplied (see section l5.2.1) for calculating $V\left(\overline{\mathbf{y}}_{\mathrm{s}}\right)$.

It hould also be noted that the systematic ample may give very poor results if the population consiate of periodic trend. In faot, if the epacinginterral sis an even multiple of the hali-period. the saple is no more precise than eingle obserration selected at randon from the population (seefigure belov). Howerer, if the campling interval is an odd multiple of the half-period, the estimate vould be rery preciee.
syetenatic samplinc is a creat adrantage in a large cale urver where the sample is to be elected at the pot in the field and where we want to meke sure that the recorder has made no mistakes in the procese op eiection. Acain, aince the angle is erenly pread orer the vhole population we erpect to obtain fairiy precise resulti.

[^5]

Further notes on the variance of \bar{y}_{s} : With regard to the estimation of error of the sample estimate it is obvious from formula (64) that it is not possible to cet an unbiased estimate from a ingle sample. Hovever, if more than one astematic sample is selected, one could estimate the variance of y_{s} casily. Another estimator for the variance of \bar{y}_{g} is given by:

$$
\text { (66) } \quad v(\bar{y})=\frac{N-1}{N} s^{2}-\frac{n-1}{n} S_{v}^{2}
$$

Where:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{2} \sum_{s=1}^{n}\left(y_{B j}-\Psi\right)^{2}
$$

And:

$$
S_{w}^{2}=\frac{1}{z(n-1)} \sum_{s=1}^{2} \sum_{j=1}^{n}\left(y_{s j}-Y_{s}\right)^{2}
$$

The S_{w}^{2} is also called "variance within the cluaters".
Example 13: At a beach B, aystematic sample of landings was eelected on a given day. From each selected landing information was collected on the total fish catch (y), by using the "real measurement" approach. The sample data are given belov. Estimate the coefficient of variation of \bar{y}.

Sample data:

$$
\begin{aligned}
& n=50 \\
& n=10
\end{aligned} \quad \sum_{j=1}^{10} y_{i}=250 \mathrm{~kg}
$$

Estimeted population mean:

$$
\bar{y}_{g}=25 \mathrm{~kg} \text { per landing }
$$

Estimated variance per unit:

$$
g_{y}^{2}=\frac{1}{9}\left\{6430-\frac{(250)^{2}}{10}\right\}=20 \mathrm{~kg}^{2}
$$

Estimated rapience of $\overline{\mathbf{y}}_{\mathrm{g}}$:

$$
\begin{aligned}
& v\left(\bar{y}_{g}\right)=\left(\frac{1}{10} \frac{1}{50}\right) 20=1.6 \mathrm{~kg}^{2} \\
& \operatorname{cr}\left(\bar{y}_{g}\right)=\frac{\sqrt{1.6}}{25} \times 100=5.06 \text { percent }
\end{aligned}
$$

15.5 Retio estimetion

In this section we will present another method in which emphasis is laid on the use of auxiliary information for improving the precision of estimates. If the values of (x) (auxiliary variate) are known for all the units in the population and the ratio of y (survey variate) to x does not differ considerably from unit to unit, it may be advantageous to estimate the population ratio:

$$
R=\frac{Y}{X}
$$

Prom the sample and thereby estimate the population mean or total. This estimate is called ratio estiante. In the case of simple random smpling an estimate (biased) of the population total is given by:
(67) $\bar{Y}_{\text {rat }}=\mathbf{Y}_{\boldsymbol{X}} \mathbf{X}=\overline{\mathrm{RX}}$
where:

$$
y=\sum_{j=1}^{n} y_{j}, \quad x=\sum_{j=1}^{n} x_{j}, \quad x=\sum_{j=1}^{n} x_{j}
$$

An estimate of the population mean is given by:
(68) $\bar{y}_{\text {rat }}=\bar{Z}_{x}=\overline{R X}$

It mould be noted that in large samples the bias of the estimate is negligiblel..
The exact expression for the variance of the estiante is very complicated. As an approximation of the variance of Y ve may take:

$$
\begin{equation*}
v\left(\bar{y}_{y, t}\right)=n^{2}\left(\frac{1}{n} \frac{1}{n}\right) s_{y x}^{2} \tag{69}
\end{equation*}
$$

Where:

$$
s_{y x}^{2}=\frac{1}{R-1} \sum_{j=1}^{K}\left(y_{y}-R x_{j}\right)^{2}
$$

Or:
$V\left(\dot{Y}_{\text {rat }}\right)=\frac{M(R-n)}{n}\left(s_{y}^{2}+R^{2} s_{x}^{2}-2 R \rho s_{y} s_{x}\right)$
Where $p:$ coefficient of correlation betveen x_{j} and y_{j}
As an estimate of the variance of \dot{X} ve may take:

$$
\begin{equation*}
V\left(\bar{Y}_{y a t}\right)=n^{2}\left(\frac{1}{n} \frac{1}{\frac{1}{1}}\right) a_{y x}^{2} \tag{70}
\end{equation*}
$$

ㅍ/ It has been proved that the entimators $\bar{Y}_{\text {rat }}$ and $\bar{Y}_{\text {rat }}$ are biased i.e. I($\left.\bar{Y}_{\text {rat }}\right) \neq Y$ and E($\bar{y}_{\text {rat }}$) 中l. This bias is nesiigible in large sampes ($n>50$). In auch a case, the ratio is normaliy distributed and the laresescale formula for its variance is valid

Where:

$$
s_{y x}^{2}=\frac{1}{n-1} \sum_{y=1}^{n}\left(y_{g}-\bar{R} x_{j}\right)^{2}, \quad \dot{R}=\frac{I}{x}
$$

Or:

$$
\nabla\left(\bar{Y}_{r a t}\right)=\frac{R(H-n)}{n}\left(s_{y}^{2}+\dot{R}^{2} E_{x}^{2}-2 \dot{R}_{y} \theta_{x}\right)
$$

As an epproximation of the variance of \bar{y} rat ve may take:
(71) $V\left(\bar{y}_{r} \in t\right)=\frac{1}{n^{2}} v(\bar{Y})=\frac{(\eta-n)}{\ln (n-1)} \sum_{j=1}^{n}\left(y_{g}-R x_{j}\right)^{2}$

Or:

$$
V\left(\bar{y}_{\text {rat }}\right)=\left(\frac{N-n}{M n}\right)\left(s_{y}^{2}+R^{2} S_{x}^{2}-2 R \rho S_{x} s_{y}\right)
$$

As an estimate of the variance of $\bar{y}_{\text {rat }}$ we may take:
(72) $v\left(\bar{y}_{r a t}\right)=\frac{(n-n)}{\ln (n-1)} \sum_{j=1}^{n}\left(y_{g}-\bar{R}_{x_{j}}\right)^{2}$

Or:

$$
v\left(\bar{y}_{r a t}\right)=\frac{(M-n)}{M n}\left(s_{y}^{2}+\dot{R}^{2} s_{x}^{2}-2 \dot{R} \rho_{y} s_{x}\right)
$$

We shall now compare the variance of the estimate based on the ample mean of y (simple random sample) and the ratio estimate. We have:

1. $V(\bar{Y})=N^{2}\left(\frac{1}{n}-\frac{1}{N}\right) S_{y}^{2}$
2. $V\left(\dot{Y}_{r a t}\right)=n^{2}\left(\frac{1}{n} \frac{1}{n}\right)\left(S_{y}^{2}+R^{2} S_{x}^{2}-2 \hat{R}_{\mathrm{R}} p S_{x} S_{y}\right)$

Hence the ratio estinate has the saller variance if:
$\rho>\frac{1}{2} \frac{C V}{C V}\left(\frac{x}{y}\right)$
Example 14: At eiven man-made lake there are 110 fishing economic units. In order to estinate the total number of fishing operations of the unition the lake in the course of eiven year, the following procedure was used. A eimple randomesiep of FEU' was selected ($n=15$). Fromeach samie unit information was obteined on the survey characteristic (y) and the number of active fishermen (x). The total numer of active fishermen at the lake is known (results of arame gurver). The table below gives the obtained saple data. Estimate the confidence intervel of y (total number of Iishing operations at the given year).

$\begin{aligned} & \text { Mishing } \\ & \text { site } \end{aligned}$	x_{1}	5	$\begin{aligned} & \text { Piening } \\ & \text { aite } \\ & \hline \end{aligned}$	x_{1}	\mathbf{y}_{5}	Fishine ata	x_{1}	y^{4}	Bomarte
01	2	220	06	3	220	11	2	200	
02	3	200	07	2	150	12	2	200	
03	4	230	08	3	190	13	3	220	
04	2	180	09	4	250	14	4	220	
05	3	200	10	4	250	15	4	250	(Finme survey)

Estimated total auger of fishing operation a on the lake at the given year:

$$
\tilde{Y}_{\text {rat }} \cdot \frac{3280}{45} \times 340=22249 \text { fishing operations }
$$

Estimated variance of $\overline{\mathrm{I}}$:

$$
\begin{aligned}
v\left(\dot{y}_{\text {rat }}\right) & =\frac{n(n-n)}{n(n-1)} \sum_{j=1}^{n}\left(y_{j}-\hat{R}_{j}\right)^{2} \\
& =\frac{n(H-n)}{n(n-1)}\left(\sum_{j=1}^{n} y_{j}^{2}+\dot{R}^{2} \sum_{j=1}^{n} x_{j}^{2}-2 \hat{R}_{j=1}^{n} x_{j} z_{j}\right)
\end{aligned}
$$

Or:

$$
\begin{aligned}
& v\left(\dot{Y}_{r a t}\right)=\frac{110 \times 95}{15 \times 14}(68500044992.84 \times 145-2 \times 70.66 \times 9790)=25439 \text { fishing operations } \\
& \text { Estimated confidence interval of } Y(P=95 \text { percent })
\end{aligned}
$$

22249-1.96×1123.76<Y<22249+1.96x1123.76
20047 fishing operations <Y<24451 fishing operations
15.5.1 The use of ratio estimation in estimating proportions

```
Buppose that on e given dey the total number of bsekets of smoked fish which
reached a lekeaide market is N(j=1, 2, ..., N). Each basket contains fish of two
different species, A and B. A simple random sample of size n of baskets is selected
and from each sample basket informetion is collected on the total weight of the basket
( }\mp@subsup{x}{j}{})\mathrm{ and the weight of species A (y ( ) .
The proportion of species A reaching the given market is:
(73)
\[
P=\frac{\sum_{j=1}^{N} y_{j}}{\sum_{j=1}^{N} x_{j}}
\]
As an estimate of \(P\) we take:
\[
\text { (74) } p=\frac{\sum_{i=1}^{n} y_{j}}{\sum_{j=1}^{n} x_{j}}=\frac{x}{x}=\hat{R}
\]
The variance of \(p\) can be taken as follows:
\[
\begin{aligned}
& \text { a. } p=\hat{R}=\frac{\dot{x}}{\bar{x}} \\
& \text { b. } v(\dot{R})=\frac{\frac{1}{x^{2}}(\dot{x})=\frac{2}{x^{2}} \frac{N(x-n)}{n} B_{y x}^{2}}{n}
\end{aligned}
\]
Or:
(75) \(V(p)=V(\hat{R})=\frac{n(n-n)}{n x^{2}} \frac{1-1}{n-1}\)
```

As en estimate (epproximetion) of the variance of peray take:
$x^{2}=N^{2} x^{2}$
(76) $v(p)=v(\vec{R})=\frac{(N-n)}{n N} \frac{1}{x^{2}} \frac{\sum_{1=1}^{n}\left(y_{j}-\hat{R}_{x_{j}}\right)^{2}}{n-1}$

Example 15: At given inland vater place there are 1500 registered rev'a. A simple random sampe of 30 FEU' was elected and information wan obtained from ench samplefu on the employment status of the active fisherien. By using the eample data
 men in the population. In the table, the sybol x, expreses the total number of active fishermen per samperev and the smbol yg the respective salaried esiatant fishermen.

x_{j}	y_{j}	Remarks								
6	3	3	1	7	3	3	2	2	1	
5	1	3	1	4	3	3	1	4	3	
2	1	4	2	3	2	4	1	3	1	
3	1	4	3	5	3	3	2	4	2	
3	1	3	2	4	3	3	2	2	1	
3	1	2	1	4	3	1	0	4	2	

Estimated proportion of salaried (cash) assistant fishermen:

$$
p=\frac{53}{104}=0.5096
$$

Estimated variance of p:

$$
v(p)=\frac{(N-n)}{N n} \frac{1}{\bar{x}^{2}(n-1)}\left(\sum_{j=1}^{30} y_{j}^{2}+R^{2} \sum_{j=1}^{30} x_{j}^{2}-2 \dot{R}_{j=1}^{30} x_{j} y_{j}\right)
$$

Or:

$$
v(p)=\frac{(1500-30)}{1500 \times 30} \times \frac{1}{(3.466)^{2} \times 29}\left\{117+\left(\frac{53}{104}\right)^{2} \times 404-2 \times\left(\frac{53}{104}\right) \times 206\right\}=0.000937
$$

Estimated confidence interval of P:
$0.4496<P<0.5696$

15.5.2 The use of ratio estimetion in stratified rendon Benping

There are \quad ainiy two reys in which retio estimate of therpopulation total \quad can be made:

1. Separate Ratio getimate: A separate estiate is made of the total of each stretum and these totals are aded:
(77) $\tilde{y}_{\text {ret. }}=\sum_{i=1}^{k} \frac{y_{i}}{x_{i}} x_{i}=\sum_{i=1}^{k} \frac{y_{i}}{i_{i}} x_{i}=\sum_{i=1}^{k} \hat{R}_{i} x_{i}$

If the sampleizes n_{1} are large in ali etratathe variance of \dot{Y} is:
(78) $v\left(\bar{Y}_{\text {ret. }}\right)=\sum_{i=1}^{k} v_{i}$

Where:

$$
v_{i}=\frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}} \frac{1}{n_{i}-1 \cdot j} \sum_{i=1}^{M_{1}}\left(y_{i j}-R_{i} x_{i j}\right)^{2}
$$

The estimeted variance of \bar{Y} is:

$$
\begin{equation*}
v\left(\dot{y}_{\text {rat. }}\right)=\sum_{i=1}^{k} v_{i} \tag{79}
\end{equation*}
$$

Where:

$$
v_{i}=\frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}} \frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{R}_{i} x_{i j}\right)^{2}
$$

2. Combined Ratio Estimate: From the sample data ve first compute:
$\bar{y}_{s t}=\sum_{i=1}^{k} N_{i} \bar{y}_{i}, \quad \bar{x}_{s t,}=\sum_{i=1}^{k} N_{i} \bar{x}_{i}, \quad \hat{R}=\frac{\bar{x}}{\bar{x}}$
If the total sample aize n is large, the variance of $\dot{y}_{\text {rat. }}$ is given by :

$$
\begin{equation*}
v\left(\bar{y}_{\text {ret. }}\right)=\sum_{i=1}^{k} v_{i} \tag{80}
\end{equation*}
$$

Where:

$$
v_{i}=\frac{n_{i}\left(n_{i}-n_{i}\right)}{n_{i}} \frac{1}{N_{i}-1} \sum_{j=1}^{N_{i}}\left(y_{i g}-R x_{i j}\right)^{2}
$$

The estimated variance of $\bar{Y}_{\text {rat. }}$ is:

$$
\begin{equation*}
\nabla\left(\bar{Y}_{\text {rat. }}\right)=\sum_{i=1}^{k} \nabla_{i} \tag{81}
\end{equation*}
$$

Where:

$$
v_{i}=\frac{n_{i}\left(n_{1}-n_{i}\right)}{n_{i}} \frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(y_{i g}-R_{x_{i j}}\right)^{2}
$$

15.6 Difference estimation

Another method which is. used in the field of large-scale sample sureys in order to improve the precision of the estimates, by making use of applementary inforation, is the difference estimation. We have seen that the ratio method will give a good estimate if the line representing the relationship between y and x pastes through the origin. If this line does not go through the origin, it vould be better to use an estimate based on the regresion y on x, rather than on the ratio of y to x. When severel items are to be estimated from the same survey the difference estimation replaces the regression estimation because of the simplicity to calculate the estimates of the survey characteristica.

As an estimate of the population mean we may take:
(82)

$$
\overline{\mathbf{y}}_{D}=\overline{\bar{y}}+k(\bar{x}-\bar{x})
$$

Where:

$\bar{y}=\frac{1}{n_{j}} \sum_{j=1}^{n} y_{j}, \quad \bar{x}=\frac{1}{n_{j}} \sum_{j=1}^{n} x_{j} . \quad \bar{z}=\frac{1}{\frac{1}{1}} \sum_{j=1}^{n} x_{j}$
k : the constant k is usually taken equal to unityil.
It should be noted thet \bar{y}_{D} is an unbiesed estimate.

$$
\begin{aligned}
\mathbf{E}\left(\bar{y}_{D}\right) & =\mathbf{E}(\bar{y})+k \mathbf{E}(\bar{X}-\bar{x}) \\
& =\bar{Y}+k \bar{X}-k E(\bar{X}) \\
& =\bar{Y}+k \bar{X}-k \bar{X}=\bar{Y}
\end{aligned}
$$

The variance of $\overline{\mathbf{y}}_{\mathrm{D}}$ is given by:
(83) $\quad V\left(\bar{y}_{D}\right)=\frac{(N-n)}{H n} \frac{1}{X-1} \sum_{j=1}^{n}\left\{\left(y_{j}-k x_{j}\right)-(y-k X)\right\}^{2}$

An unbiased estimate bf the variance of $\overline{\mathrm{y}} \mathrm{D}$ is:

$$
v\left(\bar{y}_{D}\right)=\frac{(\bar{y}-n)}{\overline{A n}} \frac{1}{n-1} \sum_{j=1}^{n}\left\{\left(y_{g}-k x_{g}\right)-(\bar{y}-k \bar{X})\right\}^{2}
$$

Or:
(84) $\quad V\left(\bar{y}_{D}\right)=\frac{(y-n)}{\ln (n-1)}\left(\sum_{j=1}^{n} y_{j}^{2}+k^{2} \sum_{j=1}^{n} x_{j}^{2}-2 k \sum_{j=1}^{n} x_{j} y_{j}-\frac{y^{2}}{n}-x^{2} \frac{x^{2}}{n}+2 k \frac{x y}{n}\right)$

An estimate or the population total is given by:
(85) $\quad \bar{y}_{D}=M \bar{y}_{D}=N\{\bar{y}+x(\bar{x}-\bar{x})\}$

The variance or \bar{Y}_{D} is:
(86) $V\left(\bar{Y}_{D}\right)=R^{2} V\left(\bar{y}_{D}\right)$

An unbiased estimate of the variance of \hat{Y}_{D} is:
(87) $\quad V\left(\bar{Y}_{D}\right)=N^{2}\left(\bar{y}_{D}\right)$

$$
=\frac{n(n-n)}{n(n-1)}\left(\sum_{j=1}^{n} y_{j}^{2}+k^{2} \sum_{j=1}^{n} x_{j}^{2}-2 k \sum_{j=1}^{n} x_{j} y_{j}-\frac{y^{2}}{n} k^{2} \frac{x^{2}}{n}+2 k \frac{x y}{n}\right)
$$

Example 16: By using the ample data of example 14 , calculate the \bar{y}_{D} anc ev($\left.\bar{y}_{D}\right)$. Calculated magnitudes:
$\bar{y}=212$ fishing operations
$\bar{x}=3$ active fishermen
$\boldsymbol{X}=3.09$ active fishermen
$k=1$
Estimated average number of fishing operations per FIU during the given year:

$$
\overline{\mathbf{y}}_{D}=212+1(3.09-3.00)=212.09 \text { fishing operations }
$$

1/ The precision of k increases as $k \rightarrow \beta$, where β is the regression coefficient in the regression equation $y=a+B x$.

Estimated veriance of $\overline{\mathbf{y}}_{\mathrm{D}}$:

$$
\begin{aligned}
v\left(\bar{y}_{D}\right) & =\frac{95}{110 \times 15 \times 14}\left(685000+145-2 \times 9790-\frac{3180^{2}}{15}-\frac{45^{2}}{15}+\frac{2 \times 3180 \times 45}{15}\right) \\
& =42.44 \text { Pishing operations }
\end{aligned}
$$

Estimeted coefficient of variation of $\overline{\mathbf{y}}_{\mathrm{D}}$:

$$
\operatorname{cr}\left(\bar{y}_{D}\right)=\frac{\sqrt{42.44}}{212.09} \times 100=3.07 \text { percent }
$$

15.7 Estisetion in unequel probebility sempling

8tratification, ratio, regression and difference estimation are some of the techniques by wich the variability in the size of the units is controlled. Another such technique is pps sampling where the units are selected vith probabilities proportionate to their ife. This method has good deal of application in the field of largescale surveys where the sempling of clusters of units, with or without sub-sampling within clusters, is preferred to direct ampling of individual units for one of two ressons: One is the difficulty of orgenizing esmple of individual unite in the absence of reliable frame. The econd reason for cluster gempling is that sampling of individual units does not make the most economicel use of the available resources.
pps method has the adrantage of giving unbiased and easily calculated estimates of mean, totals and variances. In order that this shall be so selection must be made with replecement. The measure of cluster size is the supplementary information available for the unita. For example, the mesure of size of fishing site may be its number of fishing conomic unite, FEU' (deta available from frame furvey). In this method anit with larger size has higher chance of selection as compared to one with amaller size. A simple method of selection of the sampe vould consist in allotting numbers to the units in proportion to their size and then use the table of randon numbers as usul. As demonstration of this procese of selection, consider the problea of eelecting three fishing ites from those listed in the table below;

Ser.No. of fiching site	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { FHE 's } \\ (x) \end{array}$	Cumula tive total of x	Allotted numbers	Selected fishing sites
01	12	12	001-012	Random No. 011, Fishing site sel. No. 01
02	5	17	013-017	
03	20	37	018-037	Random No. 027, Fishing site sel. No. 03
04	2	39	038-039	
05	30	69	040-069	Fandom No. O64, Fishing site sel. No. 05
06	15	84	070-084	
07	8	92	085-092	
08	6	98	093-098	
09	8	106	099-106	
10	14	120	107-120	
Total	120			

If the number of units in the population is very larce so that the cumulation of the sises of the units becomes very laborious, the folloving equivalent procedure may be used:

1. : Number of elasters in the population, e.g. fishing sites.

2. $x_{\text {max }}$: Maximun aise.

Choose a pair of randon aumbers, one betveen 1 and and the other betveen 1 and $x_{\text {nax }}$. If the second random number is analler than the aise of the unit selected provisionally by the first randon aumber, this unit is fiaaliy selected in the sample. If not, this unit is rejected and the selection is made afresh.

As a consequence of choosing units with probability proportional to (x) the estimation procedure is particularly simple. Let the sample selected by this procedure be given by:
$\left(\begin{array}{llllll}y_{1}, & y_{2} & \ldots & y_{i} & \cdots & y_{n} \\ p_{1}, & p_{2}, & \ldots & p_{i} & \cdots & p_{n}\end{array}\right.$
Where:
$p_{i}=\frac{x_{i}}{X}, \quad\left(x=\sum_{i=1}^{n} x_{i}\right)$, is the probability in which the $i^{\text {th }}$ unit is
As an estimate of the population total Y, ve take:
(88) $\quad \hat{y}=\frac{1}{n_{i}} \sum_{i=1}^{n} \frac{y_{i}}{p_{i}}=\frac{x}{n_{i}} \sum_{=1}^{n} \frac{y_{i}}{x_{i}}$

Note that in formule (88) the term ($1-\frac{n}{n}$) does not appear, as sampling is with replacement (wr).

The above estimator (88) is unbiased, i.e.:

$$
E(\bar{Y})=Y
$$

The variance of the estimated total is:

$$
\begin{equation*}
V(\hat{Y})=\frac{1}{n_{i}} \sum_{i=1}^{N} p_{i}\left(\frac{y_{i}}{p_{i}} Y\right)^{2}=\frac{1}{n}\left(\sum_{i=1}^{M} \frac{y_{i}^{2}}{p_{i}}-Y^{2}\right) \tag{89}
\end{equation*}
$$

The estimated variance of \dot{Y} is:

$$
\begin{equation*}
r(\dot{Y})=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(\frac{y_{i}}{p_{i}} \dot{Y}\right)^{2} \tag{90}
\end{equation*}
$$

Note that if $y_{i}{ }^{\alpha} x_{i}$ then:

$$
v(\dot{Y})=0
$$

Example 17: At a new man-made lake there are 20 fishing aites. In order to get an estimate of the number of gill neta owned by the fishermen (y) the folloving survey method vas applied. By using the "vater approach" a Frame Survey was initiated on the basis of which eye observations vere obtained on the number of fishing boats (x). A sample of four fishing sites was selected from the sampling frame (pps) and information vas obtajned on the survey variate. The table below gives the sample data. Estimate the \bar{Y} and cr(y).

$\begin{array}{\|l\|} \hline \text { gemple } \\ \text { fimhing } \\ \text { gites } \end{array}$	$\begin{aligned} & \text { Tumber of } \\ & \text { fimhing } \\ & \text { boate coen } \\ & x_{1} \end{aligned}$	Yinber of elli geta owned y_{1}	$p_{i}-\frac{x_{1}}{x}$	$t_{i} \frac{y_{i}}{p_{i}}$	$t_{i}^{2}=\left(\frac{J_{i}}{p_{i}}\right)^{2}$	Remarke
1 2 3 4	$\begin{aligned} & 22 \\ & 30 \\ & 30 \\ & 42 \end{aligned}$	$\begin{array}{r} 81 \\ 118 \\ 118 \\ 170 \end{array}$	$\begin{aligned} & 0.0443 \\ & 0.0605 \\ & 0.0605 \\ & 0.0847 \end{aligned}$	$\begin{aligned} & 1828 \\ & 1950 \\ & 1950 \\ & 2007 \end{aligned}$	$\begin{aligned} & 3341584 \\ & 3802500 \\ & 3802500 \\ & 4028049 \end{aligned}$	$\left(\sum_{i=1}^{20} x_{i}=496\right. \text { fiching }$
				$\left(t=\sum_{i}^{7335}\left(t_{i}\right)\right.$	14974633	

Estimated total number of cill nets owned by the fishermen:

$$
\bar{y}=\frac{1}{n_{1}} \sum_{i=1}^{n} \frac{y_{i}}{p_{i}}-\frac{1}{n_{i}} \sum_{=1}^{n} t_{i}=\frac{7735}{4}=1934 \text { gil1 nets }
$$

Estimeted variance of $\overline{\mathrm{Y}}$:

$$
\begin{aligned}
v(\bar{Y}) & =\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(\frac{y_{i}}{P_{i}} \bar{Y}\right)^{2}=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(t_{i}-E\right)^{2}=\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} t_{i}^{2}-\frac{\left(\sum_{i=1}^{n} t_{i}\right)^{2}}{n}\right) \\
& =\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} t_{i}^{2}-\left(\frac{t^{2}}{n}\right)\right)=\frac{1}{4 \times 3}\left(14974633-\frac{(7735)^{2}}{4}\right)=1423 \text { gill nets }{ }^{2}
\end{aligned}
$$

Estimated coefficient of variation of \bar{Y} :

$$
\operatorname{cr}(\bar{Y})=\frac{\sqrt{V(\bar{Y})}}{Y} \times 100=\frac{\sqrt{1423}}{1934} \times 100-2.9 \text { percent }
$$

15.8 Two-stare reapilas

When the clusters are large it is difficult to enumerate then completely. At the same time it is unneceseary to colleot information on every individual in the sample clusters. Instead, it may be better to take a further sample of survey units from esch efected ciuster and collect information of the surver characteristics from the sample urrey unita. The sample is thus eelected in two stages. At the first sage a sample of clustere are selected and at the second stage a saple of survey units are selected vithin the sample clusters. The sample design is called tro-stage sampling.

We chall now etudy how to forn estimates with their standerd errors from twoetace design.

耳otation:
: \% Mumer of flyst stage unite (Primary gampling Unite, Pgu's)

n : Firat stage sample ise.
M_{i} : 8ise of the ith PsU, i.e. number of survey unite, here called Becondery Bampling Units, 88u' ($j=1,2,3, \ldots, M_{i}$).
mis Becond stage sample units vithin the ith PsU.

$f_{2 i}-\frac{m_{1}}{M_{i}}$: second-stage sampliag fraction for ith PSU.

15.8.1 Setimation in oqual probability neqpiling

Let the fishing industry at given inlend vater place consist of fishing sites out of which a imple random sample of n fishing sites is selected. From aiven sample fishing site containing Mifishing economic units mi FEU are selected at random and investigated for the number of fishermen (y). Let $y_{i,}$ be the number of fishermen of the g_{th} fishing economic unit from the ith fishing aite. As an estimate of the population total ve take:

$$
\text { (91) } \bar{y}=\frac{N}{n_{i}} \sum_{i=1}^{n} M_{i} \bar{y}_{i}
$$

Where:

$$
\bar{y}_{i}=\frac{1}{m_{i j}} \sum_{i=1}^{m_{i j}} y_{i j}
$$

The above estimator (91) is unbiased. i.e.:

$$
E(\bar{Y})=Y
$$

The variance of the estimated total is given by:

$$
\text { (92) } \quad v(\bar{Y})=\frac{N(M-n)}{n} \frac{1}{N-1} \sum_{i=1}^{M}\left(Y_{i}-\frac{Y}{n}\right)^{2}+\frac{N}{n_{i}} \sum_{i=1}^{M} \frac{M_{i}\left(M_{i}-m_{i}\right)}{m_{i}} S_{i}^{2}
$$

Where:

$$
\frac{1}{N-1} \sum_{i=1}^{N}\left(Y_{i}-\frac{Y}{N}\right)^{2}=\frac{1}{N-1}\left(\sum_{i=1}^{N} Y_{i}^{2}-\frac{Y^{2}}{N}\right)
$$

And:

$$
s_{i}^{2}=\frac{1}{M_{i}-1} \sum_{j=1}^{M_{i}}\left(y_{i g}-\bar{Y}_{i}\right)^{2}=\frac{1}{M_{i}-1}\left(\sum_{j=1}^{M_{i}} y_{i j}^{2}-\frac{Y_{i}^{2}}{M_{i}}\right)
$$

Note that:

$$
y=\sum_{i=1}^{M} y_{i}, \quad y_{i}=\sum_{j=1}^{M_{i}} y_{i j}
$$

The estimated variance of $\overline{\mathcal{Y}}$ is:

$$
\text { (93) } v(\bar{Y})=\frac{N(N-n)}{n} \frac{1}{n-I_{i=1}} \sum_{1}^{n}\left(\bar{Y}_{i}-\frac{\sum_{i=1}^{n} \bar{Y}_{i}}{n}\right)^{2}+\frac{n}{n_{i}} \sum_{i=1}^{n} \frac{M_{i}\left(M_{i}-m_{i}\right)}{m_{i}} i_{i}^{2}
$$

Where:

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left(\dot{Y}_{i}-\frac{\sum_{i=1}^{n} \dot{Y}_{i}}{n}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} \dot{Y}_{i}^{2}-\frac{\left.\left(\sum_{i=1}^{n} \dot{Y}_{i}\right)^{2}\right)}{n}\right)
$$

And:

$$
s_{i}^{2}=\frac{1}{m_{i}-1}\left(\sum_{j=1}^{m_{i}} y_{i j}^{2}-\frac{\left(\sum_{j=1}^{m_{i}} y_{i j}\right)^{2}}{m_{i}}\right)
$$

Example 18: At a given inland water place there are eight fishing sites. In order to get an estimate of the number of fish traps owned by the fishermen (y) a simple random sample of fishing sites was selected ($n=3$). Within each selected fishing site number of fishing economic unite was taken (minm a and information was obtained from the selected units on the survey characteristic. The table below provides the obtained sample data. Celculate the magnitudes \hat{Y} and $c v(Y)$.

- Number of traps -

$\begin{aligned} & \text { Sample } \\ & \text { HUS' }^{\prime} \end{aligned}$	Semple fishing sitos			Romarks	
	1此	$2^{\text {nd }}$	$3^{\text {rd }}$		
1	13	5	12	$\begin{aligned} & s_{1}^{2}=12.3 \text { traps }^{2} \\ & s_{2}^{2}=6.3 \text { traps }^{2} \\ & s_{3}^{2}=7.0 \text { traps }^{2} \end{aligned}$	-
2	9	7	8		
3	6	10	13		
tótal	28	22	33		
	$\begin{aligned} & M_{1}=6 \\ & m_{1}=3 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{2}=9 \\ & \mathrm{~m}_{2}=3 \end{aligned}$	$\begin{aligned} & \mathrm{M}_{3}-7 \\ & \mathrm{~m}_{3}=3 \end{aligned}$		

Estimated total number of traps:

$$
\bar{y}=\frac{n}{n_{i}} \sum_{i=1}^{n} \bar{Y}_{i}
$$

Where:

$$
\bar{y}_{1}=28 \times \frac{6}{3}=56 \text { traps }
$$

$$
\hat{y}_{2}=22 \times \frac{2}{3}=66 \text { traps }
$$

$$
\hat{y}_{3}=33 \times \frac{7}{3}=77 \text { traps }
$$

$$
\sum_{i=1}^{3} \dot{Y}_{i}=199 \text { traps }
$$

And:

$$
\bar{y}=\frac{8}{3} \times 199=531 \text { traps }
$$

Estimeted variance of \bar{Y} :

$$
\begin{aligned}
v(\hat{y})= & \frac{8 \times 5}{3 \times 2} \times 221+\frac{8}{3}\left(\left\{\frac{6 \times 3}{3} \times 12.3\right\}+\left\{\frac{9 \times 6}{3} \times 6.3\right\}+\left\{\frac{7 \times 4}{3} \times 7.0\right\}\right)= \\
= & 1473.3+673.3=2146.6 \operatorname{traps}^{2} \\
& (68.638)+(31.378)=(1008)
\end{aligned}
$$

$$
\operatorname{er}(\bar{y})=\frac{\sqrt{2746.6}}{531} \times 100=8.73 \text { percent }
$$

15.8.2 Estimation in unequal probebility sempling

In two-stage design another scheme of selection consists of selecting n fishing sites (PSU's) with replacement with probabilities pi. An independent aple random sample of mi fishing economic units is taten from every sample primary sample unit. We shall call this scheme two-stage sampling with unequal probabilities.

Within a selected PSU the estimated total of the survey characteristic is given by :

$$
\text { (94) } \quad \bar{Y}_{i}=\frac{M_{i}}{m_{i j}} \sum_{i=1}^{m_{i}} y_{i j}
$$

In the present case an uniased estimate of the population total is:

$$
\text { (95) } \quad \bar{Y}=\frac{1}{n_{i}} \sum_{i=1}^{n} \frac{\hat{Y}_{i}}{p_{i}}=\frac{1}{n_{i}} \sum_{=1}^{n} \frac{1}{p_{i}} \frac{M_{i}}{m_{i j}} \sum_{i=1}^{m} y_{i j}
$$

If:

$$
t_{i}=\frac{1}{p_{i}} \frac{M_{i}}{m_{i j}} \sum_{i=1}^{m_{i}} y_{i j}
$$

Then the above estimator (95) can be written:

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} t_{i}
$$

The estimated variance of the estimated total is:

$$
v(\bar{y})=\frac{1}{n}\left(\sum_{i=1}^{n} t_{i}^{2}-\frac{\left(\sum_{i=1}^{n} t_{i}\right)^{2}}{n}\right)
$$

Example 19: To estimate the number of fishing operations (y) during the period t_{0} at given inland water place a tro-stage samping scheme vas adopted. A sample of fishing sites was selected with unequal probabilities (probabilities proportionate to the number of existing fishing boats) and within each sample fishing aite a ample random ample of fishing economic units was taken. The table below gives the obtained sample data. Calculate Y and $\operatorname{cr}(\hat{Y})$.

Sample fishing site	p_{i}	$\frac{M_{1}}{m_{i}}$	$\sum_{j=1}^{4 i} y_{i j}$	$\hat{\mathbf{Y}}_{i}$	$t_{i}=\frac{P_{i}}{P_{i}}$	$\begin{gathered} t_{i}^{2} \\ (000) \end{gathered}$	Remarks
1	$\frac{30}{1000}$	6	120	720	24000	576000	
2	$\frac{50}{1000}$	5	200	1000	20000	400000	
3	$\frac{10}{1000}$	2	110	220	22000	484000	
66000 $\left(\sum_{i} t_{i}-t\right)$ 1460000 $\left(\sum_{i}^{2} t_{i}^{2}\right)$							

Estimated total number of fishing operations during the period to:

$$
\dot{y}=\frac{1}{3} \sum_{1=1} t_{1}=\frac{66000}{3}-22000 \text { finning operations }
$$

Estimated variance of $\overline{\mathrm{Y}}$:

$$
v(\bar{y})=\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} t_{i}^{2}-\frac{\left(\sum_{i=1}^{n} t_{i}\right)^{2}}{n}\right)
$$

$=\frac{1}{6}(1460000000-1452000000)$

- 1333333 fishing operations ${ }^{2}$

Eetimeted coefficient of variation of \bar{Y} : $\operatorname{cr}(\hat{y})=\frac{\sqrt{133333}}{22000} \times 100=5.25$ percent

15.8.2.1 Belp-weighting gystem

In practice the selection of $88 U^{\prime}$ within the sampe PGU's is made by using the method of syatematic ampling. Further, considerable simplification in the analysis of the data can bechieved when the eampe selected is mede self-weighting. This is done by adjusting the size of the overali sampeof sSU's in such a whet the estimate can be obtained by multiplying the value of (y) in the sampe by anown constant factor c. To sive an illustration, uppose that the population consists of

 unit is given by:

$$
\frac{M_{1}}{m_{1}}=c n p_{i}, \text { if, for example ce5 } 50
$$

Then:

$$
\frac{M_{1}}{m_{1}}-50 n p_{i}
$$

In uch a case the estmator for \bar{y} is modified as followe:

$$
\text { (97) } \begin{aligned}
i & =\frac{1}{n_{i}} \sum_{i=1}^{n} \frac{1}{p_{i}} \frac{M_{i}}{n_{i j}} \sum_{i=1}^{n_{i}} y_{i j}=\frac{1}{n_{i}} \sum_{i}^{n}\left(\frac{1}{p_{i}} 50 n p_{i}\right) \sum_{j=1}^{1} y_{i j} \\
& =50 \sum_{i=1}^{n} \sum_{j=1}^{n_{i j}} y_{1 j}=50 y
\end{aligned}
$$

15.8.3 stratified tromitere Rarbing /

The theory diseustes in the previous sections is epplicable vhen pgu's are selected from atratun. ro cet an estimate of populetion total, es weli as variance. ve simply acd the independeat estimetes obtained within the established strata. Thus, in the case of sampine with unequel probabilities, the estimated population total is taken by:

1/ Bee also, Case 8tudy, chapter 17 .

$$
\bar{Y}=\sum_{\ell=1}^{L}\left(\frac{1}{n_{\ell}} \sum_{i=1}^{n_{i}} \frac{1}{p_{\ell i}} \frac{M_{\ell i}}{m_{\ell i j}} \sum_{i=1}^{\ell_{1}} y_{\ell i j}\right)=\sum_{\ell=1}^{L} \bar{Y}_{\ell}
$$

Where the suffix ℓ stands for the strata (l $=1,2, \ldots, L)$.
Also, the estimated variance of \bar{y} is:

$$
v(\bar{y})=\sum_{l=1}^{L} v\left(\bar{Y}_{\ell}\right)
$$

Where:

$$
v\left(\bar{Y}_{\ell}\right)=\frac{1}{n_{\ell}\left(n_{\ell}-2\right)}\left(\sum_{i=1}^{n_{\ell}} t_{\ell i}^{2}-\frac{\left(\sum_{i=1}^{n_{l}} t_{\ell i}\right)^{2}}{n_{l}}\right)
$$

15.9 Area sampling

The first requirement for probability sample of any nature is the establiahment of the Sampling Frame. A Sampling Frame is a collection of sampling units which may be unambiguously defined and identified. For certain types of emples a complete and accurate list of the survey units covered by the survey is used as a Samplinc frame. For other samples, such a list may not exist or cannot be obtained inexpensively. An Area Sampling Frame is geographic frame of well defined area unita wheroby any element has an association with the established area units. In an area sample the ultimate sampling units are the area units and the survey unita can oniy be identified by geographic rules associating them with the sample area units. The method of area sampling is a necesity for the statistical surveys at inland water places which are characterized by high level of peripheral mobility of the fishing economic unita. For the selection of the sample units the following steps can be taken:

1. Up-dating of topographical sheets, preferably of scale 1:50000.
2. Proper stratification of the area covered by the urvey population.
3. Proper delineation of the area unita into the established strata.
4. Grouping the area units into minor etrate by uaing auxiliary information (e.g. data of an aerial urvey).
5. Selection of the sample of area units.
6. Selection of survey units within the sample area units.
7. SUMMATORS, EXPECTATION TECHNIQUES

16.1 One sumpator

The sum of n consecutive integral numbers can be written:
(1) $B=1+2+3+\ldots+n$

If uffix $1=1,2,3 \ldots n$ then:
$1+2+3+\ldots+n=\sum_{i=1}^{i=n} i=\sum_{i}^{n} i$

The expresion $\sum_{i=1}^{i=n} i$ is called the "sumator"

Exercises:

$$
\begin{aligned}
& \sum_{0}^{1} i=0+1=1 \\
& \sum_{1}^{2} i=1+2=3 \\
& \sum_{1}^{3} i=1+2+3=6 \\
& \sum_{1}^{4} i=1+2+3+4=10 \\
& \sum_{1}^{5} i=1+2+3+4+5=15 \\
& \sum_{0}^{6} i=0+1+2+3+4+5+6=21 \\
& 0 \\
& \sum_{-1}^{2}=(-1)+0=-1 \\
& \sum_{-1}^{1} 1=(-1)+0+1=0 \\
& \sum_{-2}^{1} i=(-2)+(-1)+0+1=-2 \\
& \sum_{-3}^{2} i=(-3)+(-2)+(-1)+0+1+2=-3 \\
& \sum_{4}^{8} i=4+5+6+7+8=30
\end{aligned}
$$

Prove:

$$
\sum_{i}^{n} i=\sum_{n}^{1} i
$$

If we multiply each term of (1) by cohen:

$$
s^{\prime}=c \times 1+c \times 2+c \times 3+\ldots+c \times n
$$

Or:

$$
c \times 1+c \times 2+c \times 3+\ldots+c \times n=\sum_{i=1}^{i=n} a_{i}=\sum_{i}^{n} c i
$$

Exercises:

$$
\begin{aligned}
& \int_{1}^{3} 31=3 \times 1+3 \times 2+3 \times 3=18 \\
& \int_{0}^{3} 31=3 \times 0+3 \times 1+3 \times 2+3 \times 3=18
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{-1}^{1} 3 i=3 \times(-1)+3 \times 0+3 \times 1=0 \\
& \sum_{1}^{4} \frac{1}{2}=\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{1+2+3+4}{2}=5 \\
& \sum_{1}^{3} \frac{2 i}{3}=\frac{2 \times 1}{3}+\frac{2 \times 2}{3}+\frac{2 \times 3}{3}=\frac{2+4+6}{3}=4 \\
& \sum_{0}^{3}(-5) i=(-5) \times 0+(-5) \times 1+(-5) \times 2+(-5) \times 3=-30 \\
& \sum_{-2}^{3}(-4) i=(-4) \times(-2)+(-4) \times(-1)+(-4) \times 0+(-4) \times 1+(-4) \times 2+(-4) \times 3=-12 \\
& \sum_{1}^{4}(-2)^{i}=(-2)^{1}+(-2)^{2}+(-2)^{3}+(-2)^{4}=-2+4-8+16=10
\end{aligned}
$$

Prove:

1. $\sum_{1}^{n} c i=c \sum_{1}^{n} i$
2. $\sum_{1}^{n}(i+c)=\sum_{1}^{n} i+n c$
3. $\sum_{1}^{n}(c i+b)=c \sum_{1}^{n} i+n b$
16.1.1 Two summators

Let us assume that the suffix i takes the values:

$$
i=1,2,3, \ldots, n
$$

and the suffix J takes the values:

$$
\mathrm{j}=1,2,3, \ldots, \mathrm{~m}
$$

The double summation $\sum_{i=1}^{2} \sum_{j=3}^{6}(i+j)$ is:

$$
\begin{aligned}
\sum_{i=1}^{2} \sum_{j=3}^{6}(i+j)= & (1+3)+(1+4)+(1+5)+(1+6) \\
& +(2+3)+(2+4)+(2+5)+(2+6)=54
\end{aligned}
$$

Generally the double sumator:

$$
\left.\begin{array}{rl}
\sum_{i=1}^{n} \sum_{j=1}^{m}(i+j)= & (1+1)+(1+2)+(1+3)+\ldots+(1+m) \\
& (2+1)+(2+2)+(2+3)+\ldots+(2+m) \\
& (3+1)+(3+2)+(3+3)+\ldots+(3+m) \\
n & n \\
n & n
\end{array}\right)
$$

Another presentation of the double sumator $\sum_{i=1}^{i=n} \sum_{j=1}^{j=m}(i+j)$ is given in the table below:

$\underbrace{}_{i+}+$	$\mathrm{j}=1$	$\mathrm{J}=2$	$y=3$	-	-	-	-	-	-	$\mathrm{g}=\mathrm{m}$	$\begin{gathered} \text { Marginal } \\ \text { total } \\ \hline \end{gathered}$
1=1	$\begin{aligned} & 1+1 \\ & =2 \end{aligned}$	$\begin{aligned} & \hline 1+2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1+3 \\ & -4 \end{aligned}$	-	-	-	-	-	-	1+1	T. 1
$1=2$	$\begin{aligned} & 2+1 \\ & -3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2+2 \\ & =4 \end{aligned}$	$\begin{aligned} & 2+3 \\ & =5 \end{aligned}$	-	-	-	-	-	-	$2+m$	T. 2
$1=3$	$\begin{array}{\|l\|} \hline 3+1 \\ -4 \\ \hline \end{array}$	$\begin{gathered} \hline 3+2 \\ -5 \\ \hline \end{gathered}$	$\begin{aligned} & 3+3 \\ & =6 \end{aligned}$	-	-	-	-	-	-	$3+m$	T. 3
-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	- .
i=n	$\mathrm{n}+1$	$n+2$	n+3	-	-	-	-	-	-	$\mathrm{n}+\mathrm{m}$	T.n
$\begin{gathered} \text { Marginal } \\ \text { total } \end{gathered}$	T_{1}.	T2.	T3.	-	-	-	-	-	-	$\mathrm{T}_{\text {m }}$ 。	$\begin{aligned} & \text { General } \\ & \text { Total } \mathrm{T} \end{aligned}$

Prove:

1. $\sum_{i=1}^{i=n} \sum_{j=1}^{j=m}(i+j)=m \sum_{i=1}^{i=n} i+n \sum_{j=1}^{j=m} j$
2. $\sum_{i=1}^{i=n} \sum_{j=1}^{j=m}(c i+b j)=c m \sum_{i=1}^{i=n} i+b n \sum_{j=1}^{j=m} j$

The double summator $\sum_{i=1}^{i=2} \sum_{j=3}^{j=6} i j$ is:

$$
\begin{aligned}
& i=2 j=6 \\
& \sum_{i=1}^{j=1} 1 j=(1 \times 3)+(1 \times 4)+(1 \times 5)+(1 \times 6)+(2 \times 3) \\
& +(2 \times 4)+(2 \times 5)+(2 \times 6)=54
\end{aligned}
$$

Generally the double sumators

$$
\begin{aligned}
& \begin{array}{r}
i=n j=m i n=(1 \times 1)+(1 \times 2)+(1 \times 3)+\ldots+(1 \times m) \\
\left.\sum_{i=1}^{j=1} 12 \times 1\right)+(2 \times 2)+(2 \times 3)+\ldots+(2 \times m)
\end{array} \\
& (3 \times 1)+(3 \times 2)+(3 \times 3)+\ldots+(3 \times m)
\end{aligned}
$$

$$
(n \times 1)+(n \times 2)+(n \times 3)+\ldots+(n \times n)
$$

Another presentation of the double umator $\sum_{i=1}^{i=n} j \sum_{j=1}^{j m} i j$ siven in the table

$\text { it }{ }^{j+}$	$j=1$	$j=2$	$y=3$	-	-	-	-	-	-	$\mathrm{g}=\mathrm{m}$	$\begin{gathered} \text { Mareinal } \\ \text { totel } \end{gathered}$
$i=1$	$\begin{array}{\|l\|} \hline 1 \times 1 \\ =1 \\ \hline \end{array}$	$\begin{aligned} & 1 \times 2 \\ & =2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \times 3 \\ =3 \\ \hline \end{array}$	-	-	-	-	-	-	1xı	T. 1
i=2	$\begin{aligned} & 2 \times 1 \\ & =2 \end{aligned}$	$\begin{aligned} & 2 \times 2 \\ & =4 \end{aligned}$	$\begin{aligned} & 2 \times 3 \\ & =6 \\ & \hline \end{aligned}$	-	-	-	-	-	-	2xa	T. 2
$i=3$	$\begin{array}{\|l\|} \hline 3 \times 1 \\ -3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \times 2 \\ -6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \times 3 \\ =9 \\ \hline \end{array}$	-	-	-	-	-	-	$3 \mathrm{x}=$	T. 3
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-		-	-	-	-	-	-
$\mathrm{i}=\mathrm{n}$	$\mathrm{n} \times 1$	n×2	203	-	-	-	-	-	-	n×\%	T. ${ }^{\text {a }}$
$\begin{array}{\|c} \text { Marginal } \\ \text { total } \\ \hline \end{array}$	$\mathrm{T}_{1}{ }^{\circ}$	T2.	T3.	-	-	-	-	-	-	T_{m} 。	$\begin{aligned} & \text { General } \\ & \text { Totel } \\ & \hline \end{aligned}$

Prove:

1. $\sum_{i=1}^{i=n} \sum_{j=1}^{j=m} i j=\sum_{i=1}^{i=n} i \sum_{j=1}^{j=m} j$
2. $\sum_{i=1}^{i=n} \sum_{j=1}^{j=m}(c i)(b j)=\left(c \sum_{i=1}^{i=n} i\right)\left(b \sum_{j=1}^{j=m} j\right)$

General exercises

Calculate the following sums:

1. $\sum_{1}^{3} i+\sum_{2}^{5} i$
2. $\sum_{1}^{3} 1^{2}$
3. $\int_{2}^{5} \frac{2 i}{5}$
4. $\sum_{i}^{4} \frac{4_{i}{ }^{2}}{10}$
5. $\sum_{i}^{2}\left(3 i^{2}+2 i\right)$
6. $\sum_{1}^{3} 1-1$
7. $\sum_{2}^{4}\left(3+\frac{4}{1}\right)$
8. $\sum_{i=2}^{i=2} \sum_{j=3}^{j=4}(1+j)$
9. $\sum_{i=1}^{i=2} \sum_{j=3}^{j=4} i j$
10. $\sum_{i=4}^{i=5} \sum_{j=1}^{j=2}(i-j)$
11.

$$
\sum_{i=-2}^{1=2} \sum_{j=-1}^{1}(3 i+4 j)
$$

12. $\sum_{i=1}^{i=2} \sum_{j=2}^{j=2} \frac{i+j}{i j}$
13. $\sum_{i=3}^{i=4} \sum_{j=1}^{j=2} \frac{i-1}{i+j}$
14. $\sum_{i=0}^{i=2} \sum_{j=3}^{j=5}(2 i+3 j)$

16.2 The use of summators in statistics

16.2.1 The sum of the numerical values of variables

Assuming that the numerical values (real values) or variable (x) are:
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}$
If (x) expresses total monthly fish catch of afishing Economic Unit (feU) at
Lake Tanganyika, then the yearly total catchea of the FEU is given by:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}
$$

By using ammatora the above sum can be vritten:

$$
\begin{aligned}
& i=12 \\
& \sum_{i=1}= x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \\
&+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}
\end{aligned}
$$

Where:
$i=1,2,3, \ldots, 12$
(the suffix, i, stends for the twelve monthe of the given year). For simplicity:
$\sum_{i=1}^{i=12} x_{i}=\sum_{i}^{12} x_{i}$
In general, the sum of n values of x is:

$$
\sum_{i=1}^{i=n} x_{i}=\sum_{1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\ldots+x_{n}
$$

Where:

$$
i=1,2,3, \ldots, n
$$

Exercines:

1. $\sum_{0}^{2} x_{i}=x_{0}+x_{1}+x_{2}$
2. $\sum_{2}^{5} x_{1}=x_{2}+x_{3}+x_{4}+x_{5}$
3. $\sum_{-3}^{3} x_{1}=x_{-3}+x_{-2}+x_{-1}+x_{0}+x_{1}+x_{2}+x_{3}$

Prove:

1. $\sum_{1}^{n} x_{i}=\sum_{n}^{1} x_{i}$
2. $\sum_{1}^{n} x_{i}=\sum_{i}^{n} x_{i}+\sum_{n+1}^{n} x_{i},(n<n)$
3. $\sum_{1}^{n} c x_{i}=c \sum_{i}^{n} x_{i},(c=c o n s t a n t)$
4. $\sum_{1}^{n}\left(c+x_{i}\right)=n c+\sum_{1}^{n} x_{i}$
5. $\sum_{1}^{n}\left(c+b x_{i}\right)=n c+b \sum_{1}^{n} x_{i}$
6. $\sum_{i}^{n}\left(x_{i}+y_{i}\right)=\sum_{i}^{n} x_{i}+\sum_{i}^{n} y_{i}$
7. $\sum_{i}^{n}\left(c x_{i}+b y_{i}\right)=c \sum_{i}^{n} x_{i}+b \sum_{i}^{n} y_{i}$
8. $\sum_{i}^{n}\left(x_{i}+y_{i}+z_{i}\right)=\sum_{i}^{n} x_{i}+\sum_{i}^{n} y_{i}+\sum_{i}^{n} z_{i}$
9. $\sum_{i}^{n}\left(c x_{i}+b y_{i}+a z_{i}\right)=c \sum_{i}^{n} x_{i}+b \sum_{i}^{n} y_{i}+e \sum_{i}^{n} z_{i}$
10. $\sum_{1}^{n} x_{1}^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots+x_{n}^{2}$
11. $\sum_{1}^{n} x_{i}^{\mu}=x_{1}^{\mu}+x_{2}^{\mu}+x_{3}^{\mu}+\ldots+x_{n}^{\mu}$
12. $\sum_{i}^{n}\left(x_{i}-y_{1}\right)=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\left(x_{3}-y_{3}\right)+\ldots+\left(x_{n}-y_{n}\right)$
13. $\sum_{i}^{m} x_{i} y_{i}=x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3}+\ldots+x_{n} y_{n}$

In certain statistical problems curators are used to express the sum of terns with two affixes, i, j :
a: The suffix, i, is constant and suffix, j, is a variable:
i) If ill we have,
$\sum_{j=1}^{m} x_{1 j}=x_{11}+x_{12}+x_{13}+\ldots+x_{12}$
ii) If i=2 we here,
$\sum_{j=1}^{m} x_{2 j}=x_{21}+x_{22}+x_{23}+\ldots+x_{2 m}$ etc.
b: The suffix, j, is constant and suffix, i, is a variable:
i) If $\mathrm{g}=1$ we have,
$\sum_{i=1}^{n} x_{i 1}=x_{11}+x_{21}+x_{31}+\ldots+x_{n 1}$
ii) If $\mathrm{g}=2$ we hate.
$\sum_{i=1}^{n} x_{12}=x_{12}+x_{22}+x_{32}+\ldots+x_{n 2}$
-tc.
c: The suffixes, i, and, j, are variables:

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} x_{1 j}^{n}=x_{11}+x_{12}+x_{13}+\ldots+x_{12} x_{21}+x_{22}+x_{23}+\ldots+x_{2 m} . \\
& +x_{31}+x_{32}+x_{33}+\ldots+x_{3 n} \\
& +x_{n 1}^{n}+x_{n 2}^{n}+x_{n 3}^{n}+\ldots+{ }_{n n}^{n}
\end{aligned}
$$

Prove:

1. $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}=\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{j=1}^{n} x_{j}\right)$
2. $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}=\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
3. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{1} x_{i} x_{j} x_{k}=\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{j=1}^{n} x_{j}\right)\left(\sum_{k=1}^{1} x_{k}\right.$.
4. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} x_{j} x_{k}=\left(\sum_{i=1}^{n} x_{i}\right)^{3}$

16.3 Expectation techniques

We assume a discontinuous random variable, x, with:
(1) $P\left(x=x_{i}\right)=p_{i}$

The expectetion of the randon variable is defined as:
$E(x)=\sum_{i} p_{i} x_{i}$
where the sum is taken over all posible values the random variable may take. The expectation of any function of, x, say $f(x)$. is defined es:
(2) $E f(x)=\mathbb{E}\{f(x)\}=\int_{i} p_{i} f\left(x_{i}\right)$

If x is a characteristic random variable taking values 0 and 1 with probabilities p and q respectively, the $E(x)$ equals:
(3) $E(x)=1 \times p+0 \times q=p$
(4) $E\left(x^{k}\right)=1^{k} \times p+1^{k} \times 0=p$
or the expected value of any power of the characteristic random variable is the same as the expected value of the random variable.
 probabilities $p_{1}, p_{2}, \ldots p_{n}$, and let y be another variable which may take values y_{1}, $y_{2}, \ldots y_{p}$. The values of x and y are mutually excluaive and the only posible ones. Further, ${ }^{\text {Pet }} P_{i j}$ be the joint probability that x takea the value x_{i} and y the value y_{j} The expected value of the sum of the two variables is given by:

$$
\begin{align*}
E(x+y) & =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i}+y_{j}\right) P_{i j} \tag{5}\\
& =\sum_{i=1}^{n} x_{i} \sum_{j=1}^{m} P_{i j}+\sum_{j=1}^{m} y_{j} \sum_{i=1}^{n} P_{i j} \\
& =\sum_{i=1}^{n} x_{i} P_{i}+\sum_{j=1}^{m} y_{j} P_{j}=E(x)+E(y)
\end{align*}
$$

Generally if we have a set of discontinuous random variables then:

$$
\begin{equation*}
\mathbf{E}\left[\sum_{i=1}^{k} x_{i}\right]=\sum_{i=1}^{k} E\left(x_{i}\right) \tag{6}
\end{equation*}
$$

The above equality (6) implies that the expectation of the sum of number of random variables is equal to the sum of their separate expectations. Equetion (6) stande either for independent or non-independent random variablea.

For the same two random variables the expected value of the product of the variables is given by:

$$
\text { (7) } \begin{aligned}
I(x y) & =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i} y_{j}\right) P_{i j} \\
& =\sum_{i=1}^{n} x_{i} P_{i} \sum_{j=1}^{n} y_{j} p\left(\left(y=y_{j}\right) \mid\left(x=x_{i}\right)\right)
\end{aligned}
$$

If x and y are independent then:

(8) $E(x y)=\sum_{i=1}^{n} x_{i} P_{i} \sum_{j=1}^{n} x_{j} P_{j}=E(x) E(y)$

Generaliy if we have eet of mutualiy independent variables thent
(9) ${\underset{i}{i=1}}_{k}^{n} x_{i}=\prod_{i=1}^{k} E\left(x_{i}\right)$

The above equality (9) implies thet the expectation of the product of aumber of mutualiy independent variables is equal to the product of their expectations.
16.3.1 Expectation of some statistical functions

Where i_{x}^{2} ample veriance, and σ_{x}^{2} population variance, prove thet a(s) 0_{x}^{2} :

$$
\begin{aligned}
& H\left(s_{x}^{2}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{p}\left(x_{i}-\bar{x}\right)^{2}\right) \\
& =\frac{1}{n-1} \mathbb{E}\left(\sum_{1=1}^{n}\left(x_{1}-m+m-\bar{x}\right)^{2}\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n}\left\{\left(x_{1}-n\right)-(\bar{x}-n)\right\}^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n}\left(x_{i}-m\right)^{2}+\sum_{i=1}^{n}(\bar{x}-m)^{2}-2(\bar{x}-m) \sum_{i=1}^{n}\left(x_{i}-m\right)\right) \\
& =\frac{1}{n-1} \mathbb{I}\left(\sum_{i=1}^{n}\left(x_{1}-n\right)^{2}-n(\bar{x}-n)^{2}\right) \\
& =\frac{1}{n-1}\left(\sum_{1=1}^{n} \pi\left(x_{1}-n\right)^{2}-n a(\bar{x}-m)^{2}\right) \\
& =\frac{1}{n-1}\left(n \sigma \frac{2}{x}-n \sigma^{2}\right) \quad, \quad\left(\sigma_{\frac{2}{x}}^{2}=\frac{\sigma}{n}\right) \\
& =\frac{1}{n-1}\left(n \sigma_{x}^{2}-\sigma_{x}^{2}\right) \\
& =\sigma_{x}^{2} \frac{n}{n-1}\left(1-\frac{1}{n}\right) \\
& =\sigma_{x}^{2} \frac{n-1}{n} \frac{n-1}{n}=o_{x}^{2}
\end{aligned}
$$

Prove that $V(e x)=e^{2} V(x)$:

$$
\begin{aligned}
V(a x) & =V\left(x^{\prime}\right), \quad x^{\prime}=a x \text { and a constant } \\
& =E\left(x^{\prime} 2\right)-\left\{E\left(x^{\prime}\right)\right\}^{2} \\
& =E(a x)^{2}-\{E(a x)\}^{2} \\
& =a^{2}\left\{E(x)^{2}-\{E(x)\}^{2}\right\} \\
& =a^{2} v(x)
\end{aligned}
$$

Hote: the operator, V, stands for Varience
Prove that $V(a x+b)=a^{2} v(x)$:

$$
\begin{aligned}
v(a x+b) & =v\left(x^{n}\right), \quad x^{n}=a x+b \text { where } a, b \text { constanta } \\
& =E\left(x^{n}\right)^{2}-\left\{E\left(x^{n}\right)\right\}^{2} \\
& =E(a x+b)^{2}-\{E(a x+b)\}^{2} \\
& =\left[a^{2} E\left(x^{2}\right)+2 a b E(x)+b^{2}\right)-\left(a^{2}\{E(x)\}^{2}+2 a b E(x)+b^{2}\right) \\
& =a^{2}\left(E\left(x^{2}\right)-\{E(x)\}^{2}\right) \\
& =a^{2} v(x)
\end{aligned}
$$

Prove that, if $t=\frac{x-m}{\sigma_{x}}$, then $V(t)=1$:

$$
\begin{aligned}
V(t) & =E\left(t^{2}\right)-\{E(t)\}^{2} \\
& =E\left(\frac{x-m}{\sigma_{x}}\right)^{2}-\left\{E\left\{\frac{x-m}{\sigma_{x}}\right\}\right]^{2} \\
& =\frac{1}{\sigma_{x}^{2}}\left(E\left(x^{2}\right)-2 m E(x)+m^{2}\right)-\frac{1}{\sigma_{x}^{\prime}}\left(\{E(x)\}^{2}-2 m E(x)+m^{2}\right) \\
& =\frac{1}{\sigma_{X}^{2}}\left(E\left(x^{2}\right)-\{E(x)\}^{2}\right\}=\frac{\sigma^{2}}{\sigma_{X}}=1
\end{aligned}
$$

Prove that $E(t)=0$:

$$
\begin{aligned}
E(t) & =E\left(\frac{x-m}{\sigma_{x}}\right) \\
& =\frac{1}{\sigma_{x}}\{E(x)-E\}=\frac{0}{\sigma_{x}}=0
\end{aligned}
$$

Prove that if y, x, are two independent random variables, $V(x+y)=V(x)+V(y)$:

$$
V(x+y)=E(x+y)^{2}-\{E(x+y)\}^{2}
$$

$=\left\{E\left(x^{2}\right)+2(x)+E\left(y^{2}\right)\right\}-\left(\{E(x)\}^{2}+2 E(x) E(y)+\{E(y)\}^{2}\right)$
$=\left[E\left(x^{2}\right)-\{E(x)\}^{2}\right\}+\left(E\left(y^{2}\right)-\{E(y)\}^{2}\right)$

- $V(x)+V(y)$

For the same two variables (x, y) prove that $V(x-y) \quad \nabla(x)+V(y)$:

$$
\begin{aligned}
V(x-y) & =\left\{E(x-y)^{2}-\{z(x-y)\}^{2}\right\} \\
& =\left(E\left(x^{2}\right)-2 E(x y)+E\left(y^{2}\right)\right]-\left(\{E(x)\}^{2}-2 E(x) z(y)+\{E(y)\}^{2}\right) \\
& =\left[E\left(x^{2}\right)-\{E(x)\}^{2}\right\}+\left(E\left(y^{2}\right)-\{E(y)\}^{2}\right) \\
& =V(x)+V(y)
\end{aligned}
$$

If x and y ere non-independent variables, prove that $V(x+y)=V(x)+V(y)+2 C o v .(x$, y) (Cor. Covariance):

$$
\begin{aligned}
V(x+y) & =\left(E\left(x^{2}\right)+2 E(x y)+E\left(y^{2}\right)\right)-\left(\{E(x)\}^{2}+2 E(x) E(y)+\{E(y)\}^{2}\right) \\
& =\left(E\left(x^{2}\right)-\{E(x)\}^{2}\right)+\left(E\left(y^{2}\right)-\{E(y)\}^{2}\right)+2(E(x y)-E(x) E(y))^{\prime} \\
& =V(x)+V(y)+2 \operatorname{cov} \cdot(x, y)
\end{aligned}
$$

$$
\text { where } \operatorname{Cov} \cdot(x, y)=E(x y)-L(x) E(y)=E(x-m x)\left(y-m_{y}\right)
$$

Prove that for the same two variables x, y (as above) $v(x-y)=V(x)+V(y)-2 C o v$. (x, y).

Prove that p (coefficient of correlation) is given by:

$$
\rho_{x y}=\operatorname{cor} \cdot\left(t_{1}, t_{2}\right)
$$

Where:

$$
t_{1}=\frac{x-m x}{\sigma_{x}}, \quad t_{2}=\frac{y-m y}{\sigma_{y}}
$$

Prove that cor. $(x, y)=\rho_{x y} \cdot \sigma_{x} \cdot \sigma_{y}$
Prove that cor. $(\bar{x}, \bar{y})=\left(\frac{1}{n} \frac{1}{n}\right) \operatorname{Cov}(x, y)$
Where \bar{x}, \bar{y}, are ample means.

```
APPENDIX IIIA - TABLE OF RAEDON NUMBERS
```

1	2	3	4	5	6	7	8	9	10	11	12	
13	70	43	69	38	81	87	42	12	20	41	15	
26	99	82	78	99	05	22	99	52	32	80	91	
72	53	95	81	07	98	14	74	52	58	73	10	
22	08	08	68	37	16	36	62	20	02	35	98	
21	61	90	53	85	72	86	94	87	18	50	11	
47	38	55	66	50	96	96	78	34	45	52	78	
96	68	13	07	31	29	70	09	16	66	81	09	
45	92	93	44	87	72	26	75	82	31	72	69	
78	85	71	45	32	16	57	91	52	05	93	20	
51	99	50	88	62	54	90	51	01	39	18	70	
67	62	30	02	88	17	37	25	42	86	00	32	
03	08	89	77	12	41	15	25	52	30	93	19	
45	10	04	66	94	70	33	74	97	23	40	97	
62	48	46	97	04	36	31	27	29	84	85	35	
59	59	33	63	53	43	60	30	15	81	67	59	
72	63	67	17	24	55	68	32	24	80	13	92	
46	28	15	70	28	98	53	36	03	89	83	74	
21	03	09	16	31	48	05	10	98	62	14	15	
84	82	53	39	92	14	07	84	04	01	66	17	
75	68	40	90	39	95	46	10	94	68	39	10	
42	77	29	80	73	38	92	11	81	72	50	88	
63	55	09	84	66	56	92	13	97	14	87	27	
54	29	70	14	85	95	79	72	77	48	57	92	
42	97	50	61	19	55	38	55	85	57	85	08	
52	30	47	73	26	54	18	05	75	92	95	08	
88	44	33	02	47	97	47	04	12	38	93	25	
49	91	93	73	14	15	01	47	02	70	30	96	
45	42	46	06	93	60	41	09	31	29	52	49	
50	69	74	10	51	89	66	59	57	21	54	95	
18	56	73	16	02	87	41	05	13	87	13	61	

13	14	15	16	17	18	19	20	21	22	23	24
76	96	85	27	81	21	75	39	43	77	80	81
38	51	09	17	41	85	13	20	66	59	22	20
40	91	90	51	74	23	54	88	84	12	16	77
44	53	23	87	91	53	86	97	42	80	83	37
31	25	22	30	16	17	32	34	00	07	25	52
36	35	20	92	81	12	15	28	42	98	67	52
36	12	17	03	83	93	48	64	50	32	57	94
25	51	40	74	85	16	86	09	22	62	06	38
72	38	33	97	36	58	90	91	23	91	19	04
17	20	75	03	85	53	06	41	29	78	51	15
75	57	37	77	67	60	70	44	56	91	03	49
12	47	35	37	15	17	96	24	95	08	39	55
73	67	55	64	16	38	58	74	29	71	49	62
16	02	29	14	16	78	44	49	34	05	46	96
48	98	13	29	19	71	98	71	19	51	86	82
73	65	42	09	39	92	56	68	36	54	55	46
22	96	06	41	55	75	08	62	55	19	15	75
57	26	11	28	98	16	85	39	67	49	02	30
47	76	60	92	22	79	70	66	78	13	97	42
31	80	30	86	08	54	39	88	38	46	74	21
91	55	48	36	26	40	17	70	39	94	05	76
83	70	10	91	20	64	12	33	15	59	43	28
28	35	53	14	30	57	07	34	09	56	26	81
86	91	62	94	83	96	96	17	02	10	89	71
24	86	86	52	67	59	63	22	28	76	43	45
43	73	70	73	19	41	04	60	25	42	09	50
52	69	34	01	65	33	19	62	22	41	29	65
01	15	92	69	53	78	68	58	74	08	05	11
94	46	83	72	49	19	98	09	56	83	25	40
44	42	06	32	95	17	32	67	80	84	09	69
81	58	85	33	16	11	87	12	17	39	12	11
60	25	84	42	22	94	38	96	52	03	38	97
53	12	75	59	76	42	73	48	95	57	51	31
02	68	01	17	09	00	38	12	31	52	22	24
09	68	53	92	82	11	96	03	47	31	35	59

17. A CASE STUDY : THE BAYPLIMG DESIOM OF TEE CATCH ABSE8SMETT SURVEY (CAS) AT LAKE tanganyika (tanzania)l

17.1 Purpose of the survey

The Catch Assessment Survey at Lake Tanganyika (Tanania) is probability ample survey, conducted on lunar month basis by the Lake Tanganyike Fisheries Project (Tanzania). The primary objective of the arvey is to obtain reliable current estimates on a regional basis, and for the Tanaanian part of Lake Tanganyika, of the total quantity of fish harvested by the fishermen at the lake (in terme of live weicht in metric tons). Secondary objectives include the species composition of fish catch and the fishing effort involved in obtaining the catch, from which the estimate "catch per unit of effort" can be obtained. This type of information can be used, among other things, in determining the management practices that might be neceseary in the future and provides base line on which these practices can be rationally evaluated.

17.2 The sampling method of the survey

The sampling method used for the CAS can be described as "ampling in apace and time". For space, the area sampling method on atratified multistage basis vith unequal probabilities (pps) vas used. As far as time is concerned the method of the stratified random sample was applied.

17.3 Sampling in space

For the stratification of Lake Tanganyika (Tanamia) limnological information and data concerning the area distribution of the fishing industry vere used as control characteristics of stratification. Specifically, the lake was divided first into seven areas here called "strata". In order to take full adrantage of posible gaina from area stratification the sample design adopted called for further stratification of the surveyed population. Specifically, each stratum was divided into a number of area zones, here called minor-strata, by taking into account the level of localization of the rishing industry.

17.3.1 Sampling units

A sampling procedure presupposes the division of the surveyed population into a finite number of distinct and identifiable units called the sampling units. specifically, the smallest units into which population can be divided are called the elements of the population (survey units), and groups of elemente are celled clusters. In our case the Fishing Economic Unit (FEU) was taken es the survey unit or reporting unit and the Fishing Site as a cluster unit or Primary Sampling Unit (PBU). An FEU is an integral unit composed of fishing boat, fishing gear and fisherman(men) to carry out fishing operations.

17.3.2 The sample of Primary Sampling Units (PSU's)

For sampling purposes, a number of fishing sites have been elected within each established minor-stratum. Specifically, the sampling design called for the selection of two PSU's within each minor-stratum with probabilities proportionate to the number of fishing boats (inter-penetrating ub-sampling method vith unequal probabilities). For the survey, the selected sample of PSU's was kept fixedover time. In the table below (Table i7.3.2.1) the selected sample of PSU'a is given.

1/ A report prepared for the Lake Tangenyika Pishery Research Project, by $G . P$. Bazigoa FI:DP/URT/71/012/1 December 1973, Rome, Italy.

Table 27.3.2.1 Belected semple of Fsu's
stratum : 1 - Belected fishing sites/CAs

	Name		Location (see map)
$\begin{aligned} & 211 \\ & 212 \end{aligned}$	Kite Kirando Lugufa (R)		(Reserved)
$\begin{aligned} & 221 \\ & 222 \end{aligned}$	Mcangesima Kangweno-II MEuyu (R)		(Reserved)
$\begin{aligned} & 231 \\ & 232 \end{aligned}$	Heleabe Mgondosi Camp-II Kashe (R)		(Reserved)
Sises: $\begin{array}{ll}\text { M-8tri21 } & 629 c \\ & M-8 t r i 22 \\ & \text { 587c } \\ & M-8 t r i 23 \\ & 721 c\end{array}$			
Total		1937 c	

Stratum : 3 - Selected fishing sites/CAS

C. Mo.	Name	Locetion (see map)
$\begin{aligned} & 311 \\ & 312 \end{aligned}$	Makole Lufubu Kalya (R)	(Reserved)
Sizes: M-8tr:31 258c		

C.No. Name	Location (see map)	
411		
412	Ikola Karema Kasanga (R)	

Sizes: M-8tr:41 140c
Stratum : 5-Selected fishing ites/CAB

C.No.	Name	Locetion (see map)
$\begin{aligned} & 511 \\ & 512 \end{aligned}$	Mkombe-I Kambve-I Katoba (R)	(Reserved)
$\begin{aligned} & 521 \\ & 522 \end{aligned}$	Sheshete-I Chongo Katete (R)	(Reserved)
$\begin{array}{r} 531 \\ 532 \end{array}$	$\begin{aligned} & \text { Kipili } \\ & \text { Uwile (ISL) } \\ & \text { Mtakuja (R) } \end{aligned}$	(Reserved)

Sizes: M-8tr:51 252c
M-8tr:52 360c
M-8tr:53 393c
Total 1005 C
Stratum : 6-selected fishing aites/cas

C.No.	Hame		Location (see map)
$\begin{aligned} & 611 \\ & 612 \end{aligned}$	Katale Chombo Kisambela-I (R)		(Reserved)
621 .626	Msamba Wampenbe Kizumbi (R)		(Reserved)
	8izes: $\begin{aligned} & M-8 t r: 61 \\ & M-8 t r: 62\end{aligned}$	$\begin{aligned} & 227 c \\ & 349 c \end{aligned}$	
	Cotel	576e	

Btratum : 7 - Belected rishing sites/CAs

C. Ho.	Name		Location (see map)
$\begin{aligned} & 711 \\ & 712 \end{aligned}$	Chove Kilambo Tundu (R)		(Reserved)
$\begin{aligned} & 721 \\ & 722 \end{aligned}$	Kipanga Kasenga Musi (R)		(Reserved)
Sizes: $\begin{aligned} & \text { M-Str: } 71 \\ & \text { M-Str: } 72 \end{aligned}$ Total		$\begin{aligned} & 308 \mathrm{c} \\ & 367 \mathrm{c} \end{aligned}$	
		675 c	-

Stratum	Min-str	$\begin{gathered} \text { Number of } \\ \text { rishing boats } \end{gathered}$	Remarks
		Total 7396	
8tr:1	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 2805 \\ \hline 690 \\ 599 \\ 584 \\ 439 \\ 493 \end{array}$	
Str: 2	$\begin{aligned} & 2.1 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 1937 \\ 629 \\ 587 \\ 721 \end{array}$	
8tr: 3	3.1	$\frac{258}{258}$	
Str: 4	4.1	$\frac{140}{140}$	
str: 5	$\begin{aligned} & 5.1 \\ & 5.2 \\ & 5.3 \end{aligned}$	$\begin{array}{r} 1005 \\ \hline 252 \\ 360 \\ 393 \end{array}$	
6tr: 6	$\begin{aligned} & 6.1 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \frac{576}{227} \\ & 349 \end{aligned}$	
Str: 7	$\begin{aligned} & 7.1 \\ & 7.2 \end{aligned}$	$\begin{aligned} & \frac{675}{308} \\ & 367 \end{aligned}$	

17.3.3 The sample of Fishing Economic Units (FEU's)

From a tatistical point of view fishing ite (PGU) can be considered as a compound area unit consisting of two parts, the residential area of the fishing site where the headquarters of the fEU's are located and the beach of the fishing site
where the producing FEU's are located. According to the established "survey method" of the survey, within each selected P8U information on the static characteristics of the FEU's i.e. items of informetion on the components of the FEU's, are collected by using the census approach, whereas items of information on the dynamic characteristica of the Fru's i.e. input and output data of the fishing operations of the unite, are obtained by using the sampling approach. For the selection of the samples of feu's within the sample rishing sites, the method of syematic sampling vith random starting point is used.

17.4 Sampling in time

One of the purposes of the CAS is to provide rediable estimates of the trends describing the yield seasonality pattern at the lake. By taking into account the type of fishery at the lake it was decided that the "reference pariod" of the survey characteristics of the CAS vould be lunar month (typical period).

Within each typical period the selected PSU's (fixed sample) are randomly allocated in survey periods (one survey period covers four days); the obtained sample data of the survey within typical period are used to provide eatimates on a lunar month basis. Annual estimates are calculated by adding up the monthly estimates.

17.5 The survey period of the Catch Assessment Survey (CAS)

For the CAS the length of the survey period was determined by taking into account the sampling error attributed to day-by-day variatione of surveyed characteristice. It was decided that the optimum survey period of the CAS is four consecutive days. Specifically, the first day is used to set up the ampling frame of the existing feu's within the sample fishing sites. Items of information of the urvey characteriatica are collected within each or the remaining three daya.

17.6 Survey operations

The description of the survey operations provides an indication of the linkage between the sample and survey design and the actual collection and procesing of the data. In this section summary is given of the field operation or the survey and data processing.

17.6.1 Field personnel

An intensive training course for field recorders, lasing for more than two veek. was held at Kigoma. The course vas also attended by Regional officers. An objective evaluation of the trainees was made through a series of exercises, discussions on methodological problems and a critical analysis of the results of the conducted Mini Pilot Survey.

For the field operations of the cas seven working eroups (wG's) vere formed. Each WG consisted of a statistical recorder and an asistant. One WG vas assigned to each Stratum.

For the transportation of the field personnel between the selected rishing sites two boats are going to be used. One stationed in Kigoma (Project boat) and the other one in Stratum 5 of the survey.

17.6.2 Field operations - control

The best asaurance or accurate rield vork is that the stetistical recorders are well trained and are capable, conscientious and keen. Nevertheless, it is important even with good recorders to keep a close watch on the progress of the vork.

In the cas the man ingredients of the field supervision as far as control in concerned can be described as follows:

1. Field editing: The primary purpose of the field editing, carried out by the upervisors of the survey, is to catch onissions, inconsistencies, illegible entries and errors, before schedules are cent to Kigoma office (HQ) and correction is atill pasibible.
2. The supervisors must elso check the quality of the vork of the recorders. Within lunar month each supervisor is required to observe the work of the recorders working in the supervision Ares for which he is responsible. During the period the supervisor accompanies a recorder, he observes how well the recorder "sells" the survey, how he checks the coverage of the survey units, how he selects the samples of the FEU's, whether he asks questions properly, whether he conducts measurements properly, and how well he conducts himetif generally.
3. Ivery month the upervisor will give report to each recorder of any errors detected in the course of reviewing his work in the office. As required, the report will epecify what secial eteps the recorder should take to avoid making imilar errors in the future.

17.6.3 Source documents

For the collection of the information at the selected fishing sites four forms are used, Form: Bo, Bl, Al, A2. Specifically, the purpose of Form: Bo is to set up the empling frame of the existing. FEU' at the sample fishing aites and collect iteme of information on the componente of the FEU'. The form is also used for the clessification of the existing FEU's into group according to the fishing method used.

Form: Bl is used to select the samples of active FEU's at the sample fishing sites. Specirically, sample or FEU' is selected in each survey day within the established fishing methods.

Form: Al is used to collect items of information on fishing effort and fish catch from the elected landinga using Lusenga, Liftnets or Beach seine net for dagaa as a fishing method.

Form: A2 is used to collect items of information on fishing effort end fish catch from the enected landings using oillnet, Beach seine net for fish or handines as a fishing method. In Appendix IIIb the format of the forms used for the cas are given.

17.6.4 Procesation operations

The procesing of the material and the highly skilled task of analyeing beging soon after the completion of the field operations of the eurvey (on a luner month basis). Before the questionalires can be regarded as ready for tabulation they must be checked once more by the upervisors for completeness, accuracy and conformity. At the same time the quality of coding must be checked by the upervisors.

It has been decided that tabulation be done in tvo stages. In the first stage the procese is done manually. For final presentation within a month number of besic tables ere constructed providing estimetes for the most important characteristics of the survey.

In the second stace machine tabulation vill be used. The computerisation soheme will be discussed in another report.

In Appendix IIIe the working gheets wheh vill be used for the manal processing of the resulte of the cas are givan. Also in Appendix IIIc the imetructione for the completion of the vorking bheets are civen.

APPERDIX IIIb - FORMS USED FOR TEE CATCH ASSESSMENT SURVEY (CAS) WHE TAMGMYIKA PISBERIES RESEARCB AMD DTYEROPMEAT PRONTGT (TAMEANTA) CATCR ASSEBSKELTT BURVEY (CAB)

LIET OF EXISTIMO FIBEITRO ECONONIC UNITS

$\square \begin{aligned} & \text { sample } \\ & \text { sibhing ite }\end{aligned}\left[\begin{array}{l}\text { c.No. } \square \\ \text { Mame }\end{array} \square\right.$


```
LAKE TAHGAMYIKA FISHERIES RESEARCH AHD
DEVELOPMETY PRONECT (TANZANIA)
CATCR ABSEBSMLITT SURVEY (CAS)
708M: B2 ( 1.21
```

SELECTION OF PEU'S
Mame of the RecorderLanding dete \square Landing dete \square
\square


```
LAKE TAMGAMYIKA PIBGERIES RESEARCH AMD
DEVELOPMERT PROJECT (TANZAIIA)
CATCH ASSESSMENT BURVEY (CAS)
```


CATCA RECORDB

(LUSEMGA, BEACA DAGAA, LIFTAETS: 1, 3.5)


```
LAKE TAMGAMYIKA FIBMERIES RESEARCE ABD
    FORM: A2(2.3)
DFVETOPMFIT PROSRGT (TNTYNITA) CATCR ABR BRETR RUNVY (GAR)
```

CATCE RECORDB
OTERT FIBLIMC MLTEODS

Mame of the Recorder \qquad Selected FEU:C.Mo. $\square \quad \square$

Lending date | \square | | |
| :--- | :--- | :--- |

Hane of fishing site \qquad

LAKE TAEGAMYIKA FISHBRIES RESEARCH AMD
DEVELOPNEAT PROSECT TAMZAMIA
CATCA ABSESSMTTT SURVEY (CAS)

RECORDFR'S TIMETABLE

```
Name of the Recorder
```

\qquad

``` Survey period
```

AREA UNIT C.No. \square

Departure		Pointa of travel				Arrival		Remarke
date	time	From:		To:		dat	time	
		Name	C.NO.	Name	C.No.	date		

APPENDIX IIIC－WORKING SHEETS OI AND O2（WS：OI，WS：O2）
AND INSTRUCTIONS FOR COMPLETION
WORKING SHEET 01 （wS：01）
（EXISTIMG PEU＇S ARD THEIR COMPOMERTS）

－									
引									
三									
\equiv									
三									
						\rceil			
E									
三									
－									
－									
						$=$	5	5 s	E．
		吅		－	．		号	呂	－

C.Fishing method:
d.Characteristic(s):
e.Unit(s) of measure-
ment:

PROCESSIMG

1. The purpose of WS: 01
2. The format of WE:O1
3. The heading of WS:O1
4. The body of WS: 01

4a. Recording the items of information

4b. The raising factor, RF

WS:Ol is used to calculate estimates (totals) of the existing Fishing Economic Units and their components within the estabilshed minor strata and within the fishing methods ueed. Estimates are calculated on lunar month basis. Annual estimates are obtained by adding up the monthly estimates.

W8:Ol consiste of two perte, the heading of the sheet and the body of the sheet.

Insert:

a) The number indicating the round of the survey: R:01, etande for the first lunar month; R:02, stands for the second lunar month, etc.
b) The code number (two digits) of the minor stratum you are dealing with e.g. 11 or 31, etc.

Within each minor stratum two fishing sites have been selected. Further, for each sample fishing ite, Form: Bo has been completed. In the form items of information are collected on the number of existing FEU's, the fishing methods) used by the units and their components.

The body of the sheet is divided into three sections (each section consists of three parts, $1,2,3$). A section is used to calculate estimates of the survey characteristics on aishing method (primary fishing method) basis within the given minor stratum. The input data of the sheet are given in the completed form: Bo.
In each section of the body of WS:Ol items of information are recorded on ample fishing site basia. Specifically, line l. Tif is used to record the total value of aiven characteristic in the first selected fishing site and within the given fishing method e.g. in col:4 you should insert the total number of FEU's using Lusenga as primary fishing method. Line $2 . \mathrm{T}_{2}$ is ueed to record the total value of the same given characteristic in the second selected fishing site and within the same given fishing method. In lines 1. D_{1} and $2 . D_{2}$ the sample totals are infered to the minor tratum totals. Specifically, to get the values in line l. Di one must multiply the recorded values in $1 . T_{1}$ by the respective raising factor (Col:2). Also, to get the values in line 2. D_{2} one must multiply the recorded values in 2.T2 by the respective raising ractor (col.2). The esfimated value of each survey characteristic is obtained in line 3D:

$$
3 \bar{D}=\frac{1}{2}\left(1 . D_{1}+2 \cdot D_{2}\right)
$$

The RF in given part of action is calculated by the formula:
$R P=\frac{T o t a l}{\text { number of existing FEU's in the minor stratum }}$
Note that data on the total number of existing feu's (fishing boats) on minor stratum basis are given in section 3.2 of the report. Col:4 of the aheet is used to calculate estimetes of the total number of existing FEU's by fishing method used. Cols:5-15 are used to calculate estimates of the various components or the FEU's. For each characteristic one colum should be used. In the headings of the columas insert the names of the survey characteristics.

PROCESSIHG

IHSTRUCTIONS FOR THE COMPLETION OF WB:O2

1. The purpose of W8:02
2. The format of WS:02
3. The heading of WE:02
4. The body of W8:02

4a. Recording the itema of information

4b. Calculetion of the overall raising factors, RF

W8:02 is used to calculate entimates (totals) of the dynamic characteristics of the CAS i.e. fishing effort, fish catch, etc. withia the established minor strata and within the fishing methods used. Estimates are calculated on lunar month basis. Annual estimates are obtained by adding up the monthly estimates.

WS:O2 consists of two parts, the heading of the sheet and the body of the sheet.

Insert:
a) The number indicating the round of the survey: R:01, stands for the first lunar month; R:O2, stands for the second lunar month, etc.
b) The code number of the minor stratum you start calculations.
c) The name of the fishing method and its code number e.g. LUSENGA, 1.
d) The name of the characteristic (s) under estimation.
e) The unit(s) of measurement of the survey characteristic(s).

Within each minor stratum two fishing sites have been selected. Further, in each sample fishing site and within the fishing methods used, items of information are collected rrom the sample fev's for three consecutive days (completed questionnaires, Form:Al or A2). The body of WS:02 is used to receive the items of information from the completed forms Al or A2 and infer them to the minor stratum totals.

The body of WS:02 is divided into two identical sections in their structure. The rirst section is used to receive the items or information from the first selected fishing site and the other section to receive the data from the second selected fishing site. Within each section one line is allocated to record the data per selected FEU, (completed FormiAl or A2). As you know, an independent sample of FEU's have been selected within each sample day (there are three sample days within cach lunar month/fishing site). Therefore, within each section of the body of WS:02 items of information must be recorded on sample day basis.
The columns of the body of W8:02
Col: 1,2 , tand for the ample code numbers of the selected PEU (see Form: Al or A2). Specifically; in the large box insert the code number of the selected fishing site, in the mall box insert the code gumber of the fishing method. In Col:3 the serial numbers of the selected FEU's are presented (there is room to insert up to 10 FEU's).
Col: 3, 5, T, are used to record the values of the cheracteristic under estimation of the selected FEU's in sample day-i, sample dey2 and sapie day- 3 respectively.
Col: 4, 6, 8, are apare columis to be used for recording the values of a second characteristic.

Calculations of the orerall raising factors mut be made on ample dey besis and within each section of the body of W8:02.
Col: 11: In this colum there is pyramid of boxes in which you have to insert certain arithmetical values i.e.:

[^6]
LIST OF TECHMICAL REPORTE

The technical reports produced by the eame athor up to the preaent time, on the application of sampling techniques in fishery statistice (inland waters), are giren under sections $A-D$ in the list below. Copies can be obtaiaed from Fishery statistica Unit, Department of Fisheries, FAO/UN, Rome, Itely.

A: Statistical Studies (St.S.)

1. Sampling Techniques in Inland Fisheries vith Special Reference to Volta Lake. St.S./l, FIO:SF/GBA/10, May 1970
2. Frame Surveys at Volta Lake. St.S./2, FIO: SF/GRA/10. March 1970
3. Yield Indices in Inland Fisheries with Special Reference to Volta Lake. St.S./3, FIO:SF/GHA/10. September 1971
4. Frame Survey at Kainji Lake. St.S./1, FI:SF/MIR/24, January 1971
5. The Yield Pattern at Lake Nasser. 8t.s./1, UNDP/8F/EGY/66/558, september 1972
6. The Yield Pattern at Kaingi Lake. St.S./2, UNDP/SF/MIR/24, October 1972
7. Aerial Survey on the Lakes Malombe and Malavi. Analysis of the Results of the Survey. St.S./1, UNDP/SF/MLW/16, November 1972
+8. The Yield Pattern at Volta Lake. St.S./4. UNDP/Sp/GHA/10. May 1973
**9. The Improvement of the Fisheries Statistical System at Lake Kossou. St.s./1. UNDP/SF/IVC/71/526, April 1973
**lo. Coverage Check Survey of the Aerial Survey at Lake Kossou (ccs-As). St.s./2. UNDP/SF/IVC/71/52f, April 1973
8. The Improvement of the Fisheries Statistical System at Lake Tanganika (Tanzania). St.S./1, UNDP/SP/URT/71/012, May 1973
9. Statistical Analysis of the Results of the Aerial Survey. St.s./l, Lake Victoria Fisheries Research Project, UNDP/SF/RAF/T1/242, August 1973
+13. Recent Trends in the Yield Pattern of Kaingi Lake. St.S./3, UNDP/BF/MIR/24, April 1974
+14. Analysis of the Results of Frame Surveys 2 and 3 at Kaingi Lake. 8t.8./4. UNDP/SF/RIR/24. April 1974

B: Statistical Efficiency (St.E.)

1. Efficiency of Different Sampling Methods for Large scale Biological and Fishery Statistical Sample Surveys at Large Arrican Lakes:
2. Cove-Rotenone Sample Survey at Kariba Lake, St.E./1, UNDP/SF/ZAM/11, April 1972
3. Deck sampling: An Assessment of Pilot Traviing Survey on Lake Malavi (Malevi), St.E./2, UNDP/SF/MLW/16, February 1973

C: Fishery Statistical Surveys/Training (FSS.T.)

* ${ }^{*}$. Training Courses on Fishery Statistical Surveys (Iniand Waters). F8s.T./2. UNDP/8F/ZAM/11, March 1973
* Also arailable in Prench.
+ Will be araileble shortly.

D：Techaicel Reports
－＂1．Variation in Catchability of fish with avb and Bozo Gillnets（Lake Kossou）， Report No．3，UnDP／8F／IVC／71／526，August 1973
＊＊2．A Qualitative Evaluation of the Present statistical systen（ss）（Lake Kossou）， Report No．8，UMDP／BF／IVC／71／526，Aucust 1973
3．The Sampling Deaign of the Catch Asseasment Survey（CAS），Lake Tanganyike （Tanzania），Report Mo．1，UNDP／SF／URT／71／012，Decomber 1973
＋W4．An Assessment of the Present status of the Fishery at Lake Tanganyike（Burundi）， Report Mo．1，UMDP／SF／BDI／70／508，Januery 1974
＋＂5．The Yield Indices at Lake Tanganyike（Burundi），Report Mo．2，U⿴囗十DP／8F／BDI／70／ 508，January 1974
＋＂6．A statiatical Analyais of the Result of the Biological Sample survey（Indus－ trial fiahery）at Lake Tanganyika（Burundi）．Report Mo．3，UMDP／BF／BDI／70／508， January 1974
†＂7．Varietions in Catchability of Fish with AVB and bozo oillnets（Lake Kossou）： Analysie of the Results（Dry season and in Coastal Areas）．Report Mo．18， UKDP／BF／IVC／T1／526，April 1974
－Also available in Freach．
－Will be available in French．

+ Will be available shortly．

$$
10: 11397
$$

[^0]: Bibliorraphic entry
 Bazigos, G.P. (1974)
 FAO Fish.Tech. Pap., (133):122 p.
 The design of fisheries statistical
 surveye - inland vaters
 Fisheries atatiatics surveys - inland waters. Training courses covering:
 Concepts, methods, techniques, applications. Fishermen, fishing gear, fishing craft. Frame surveys. Catch assessment surveys. Fishing industry - economics, labour. sampling and sampling deaigns. Dete proceseing, field operations control. Working sheets and instructions, examples. selected bibliography - technical reports.

[^1]: 1/ Part I and Part II of the manual heve been issued as an independent report: Training Courses on Fishery Btatistical Burveys (Inland Waters), by O.P. Bezigos. UHDP/EF/ZAM. 11 March 1973

[^2]: 1/ The expected value is the mean of the frequency distribution of the estimates of $a l l$ possible samples derived from repeated applications of the given survey method, The frequency distribution of the estimates is also called the sampling distribution of the estimates.

[^3]: 1/ Deck sampling: An Assesament of Pilot Traving Survey on Lake Malawi (Malavi). by G.P. Basigos, UNDP/8F/MLW.16, Februery 1973

[^4]: 1/ Population values

[^5]: 2/ Another vay of looking at systematic sampling is that the population has been divided into large sampling units (clusters) each of vhich contains of the oricinal unita. The operation of choosing randonjy located eystemetic eaple is Just the operation of choosing one cluster at random from the g clusters.

[^6]: 4c. Calculation of estimated total:

