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PREFACE
THE present work had its beginnings in a series of papers

published jointly some years ago by Dr Dorothy Wrinch and

myself. Both before and since that time several books pur-

porting to give analyses of the principles of scientific inquiry
have appeared, but it seems to me that none of them gives

adequate attention to the chief guiding principle of both

scientific and everyday knowledge : that it is possible to learn

from experience and to make inferences from it beyond the

data directly known by sensation. Discussions from the

philosophical and logical point of view have tended to the con-

clusion that this principle cannot be justified by logic alone,

which is true, and have left it at that. In discussions by physi-

cists, on the other hand, it hardly seems to be noticed that

such a principle exists. In the present work the principle is

frankly adopted as a primitive postulate and its consequences
are developed. It is found to lead to an explanation and a

justification of the high probabilities attached in practice to

simple quantitative laws, and thereby to a recasting of the

processes involved in description. As illustrations of the

actual relations of scientific laws to experience it is shown how
the sciences of mensuration and dynamics may be developed.
I have been stimulated to an interest in the subject myself on
account of the fact that in my work in the subjects of cosmo-

gony and geophysics it has habitually been necessary to apply

physical laws far beyond their original range of verification in

both time and distance, and the problems involved in such

extrapolation have therefore always been prominent.

My thanks are due to the staff of the Cambridge Univer-

sity Press for their care and courtesy ;
also to Dr Wrinch and

Mr M. H. A. Newman, who have read the whole in proof
and suggested many improvements.

HAROLD JEFFREYS
ST JOHN'S COLLEGE

CAMBRIDGE

January 1931





CHAPTER I

LOGIC AND SCIENTIFIC INFERENCE

"Contrariwise", continued Tweedledee, "if it was so, it might be;
and if it were so, it would be: but as it isn't, it ain't. That's logic.'*

LEWIS CARROLL,
Through the Looking Glass

1-1. The fundamental problem of this work is the question
of the nature of scientific inference. The data available to the

scientific worker, as well as to the man in the street, are com-

posed of two classes. The first class consists of the crude data

provided by the senses. These will be called sensations. The
second class consists of general principles, which determine

how the information provided by the senses is to be treated.

It is actually treated in two different ways, which may be

called description and inference. Description, in the strict

sense, would involve only the cataloguing and classification of

sensations already experienced. Inference is the use of sen-

sations already experienced to derive information about sen-

sations not yet experienced, to construct physical objects, and
to describe the past and future of these physical objects. For

pure description only an application of the principles of

classification and the properties of classes is required; these

are purely logical ideas.

Inference requires much more. However fully one's past

experience has been described and indexed, nothing not in-

cluded in it can be inferred without some principles not

purely logical in character. As a matter of logic this is a

commonplace. Actually one proceeds, in the simplest type of

inference, on the supposition that what has been found to

be true in previous instances will be repeated in new in-

stances. The distinction between deductive logic and scientific

JSI I



2 LOGIC AND SCIENTIFIC INFERENCE

inference may be illustrated by means of one of the classical

instances of the former.

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

This type of argument, the syllogism, is one of those chiefly

used in pure logic ; indeed it was believed for ages that there

was no other. The first, or general, statement about all men
is called the major premiss, the particular statement that

Socrates is a man is called the minor premiss , and from the two

together we draw the conclusion that Socrates is mortal. But
as a scientific argument it is unsatisfactory. We question im-

mediately whether the major premiss is true. It is not known

by experience. We cannot state as a result of experience that

a man is mortal until he is dead. At any instant men are

living, and they all constitute unverified instances of the

premiss; it is simply unknown by experience whether the

general statement is true or not. Gulliver, arriving in

Luggnagg, might have said equally well :

All men are mortal.

A Struldbrug is a man.

Therefore a Struldbrug is mortal.

But Gulliver knew better and did not argue with his informers.

There are several ways of treating the classical syllogism so

as to make it somewhat more acceptable to scientific thought.

One is to say that the general proposition is not asserted from

experience at all, but is known to be true in all possible cases

from previous knowledge. In such a case the syllogism be-

comes valid. But we avoid the difficulty only by admitting
that there may be knowledge applicable to the study of ex-

perience and not itself derived from experience. This type of

knowledge we call a priori. We do not say that it is the solution

of the present difficulty, but a priori knowledge exists, and

we shall have occasion later to consider instances of it at

length.



LOGIC AND SCIENTIFIC INFERENCE 3

The word mortal itself introduces difficulties of a type that

will concern us later. Suppose that we accepted the syllogism
and that Socrates had nevertheless survived till the present

day. We should still not be compelled to reject the conclusion

of the syllogism. If a doubter pointed out that Socrates had
reached the advanced age of 2000 odd, that would not in the

least prevent us from continuing to assert his mortality. Our

reply would be that he might die to-morrow as far as the

doubter knew; and that would close the matter unless the

doubter thought of a new line of attack. But suppose he went
on :

" You are saying that Socrates will not live for ever. May
I point out that even if he lives to be a million years old it

could still be said that he would die some day? Your state-

ment has the quality that no evidence could possibly be pro-
duced that would contradict it. Even if it is true it still gives

no reason to suppose that a man cannot live till he is a million

years old. In fact it is vague and unverifiable, and therefore

uninteresting". The doubter has at this stage abandoned the

attempt to show that the deduction has been falsified by ex-

perience; he says instead that it is futile because it is not

capable of being compared with experience. This is the

scientific attitude.

Both these criticisms of the classical syllogism have ana-

logues in relation to certain modern theories of scientific

knowledge, as we shall see later.

1-2. An essential object of scientific inference is to increase

knowledge. The syllogism has a place in it just so far as it

assists this object. Some syllogisms do; others do not.

Consider the following example :

All English policemen are over five feet nine inches

in height.

Brown is an English policeman.
Therefore Brown is over five feet nine inches in height.

The syllogism as it stands is perfect. The conclusion is free
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from the difficulties of that of the classical syllogism; it is

perfectly possible to measure Brown's height. But how do

we know the general proposition? If it is known by experi-

ence, we have already measured the heights of all English

policemen, and therefore we have measured P.C. Brown in

particular, and we know directly that his height is over five

feet nine inches. The major premiss, in fact, contains the

conclusion, and the syllogism tells us nothing that we did

not know already. But suppose that we have not made ex-

tensive measurements of the heights of policemen, but that

we know of the official regulation that no man is appointed to

be a policeman unless his height is at least five feet nine. The

general proposition is now part of our knowledge without

having been verified in all its instances
;
it is previous know-

ledge. The inference concerning P.C. Brown is now new

knowledge ;
the syllogism tells us something to expect about

his appearance when we meet him that we should not have

known without it. Thus the same syllogism may or may not

provide new knowledge, according to the means of knowing
its premisses.
The syllogism about Socrates raises the same question in a

more complicated form. Its author may have had previous
intuitive or divinely revealed knowledge, independent of ex-

perience, that all men were mortal. If so, he could construct

his syllogism and derive new knowledge about the particular

man Socrates. But this is not the practical case; belief in

human mortality is based on experience. A contemporary of

Socrates might proceed in the following way. He would sum-

marize what he knew of the duration of human life. No case

was known of a man's having lived for 200 years, and few for

100. This suggests a general rule: all men die before reaching
200 years of age, most before reaching 100. He might look for

exceptions among living persons, of whom few were over 100

and none over 200. The general rule was verified with regard
to all dead persons, and not contradicted by living ones. It is

then stated as a result of experience. The inference concerning
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the life of a living person could then be drawn from the rule.

It could be said that
"
Socrates will not live to be 200

;
he will

probably not live to be 100". The fundamental difference

between the two methods of approach is that in the former,
where the major premiss is known a priori, we always proceed
from the general to the particular; in the latter we get the

major premiss itself by asserting as a general proposition what
was previously known only in particular instances. The former

method is deduction, the latter induction. In both cases we

proceed from the premisses to the conclusion by means of

an apparent syllogism; but there is a significant difference,

due to the difference in the nature of the available knowledge
about the major premiss. Suppose that two people, while

Socrates was alive, both drew the inference that he would not

live to be 200, one basing his beliefs on human life in general

on intuitive knowledge, the other on previous experience;
and suppose that Socrates nevertheless lived to be 2000.

Suppose further that our doubter paid a visit to Elysium and

interviewed their shades. The former would have to admit

that his intuitive knowledge, which he had held with certainty,

was wrong, or to say that Socrates was not a man but an im-

mortal god, or perhaps to resort to abuse. The latter would

explain that the major premiss in his inference was not known
with certainty, but that it was extremely probable on the

evidence before him. The inference had been correct for some

thousands of millions of people that lived when or after it was

drawn, and in the circumstances it was not so bad that there

had been one exception to the general rule. If he chose to be

aggressive he might ask whether Socrates had been medically

examined recently with a view to finding out the causes of his

anomalous behaviour; for one of the chief functions of

exceptions is to improve the rule.

The inference with regard to Socrates has actually been

verified, but the situation has arisen with respect to many
other scientific laws. At present we are faced with the in-

accuracy of Euclid's parallel axiom, which for millennia was
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considered intuitively obvious ; with the inaccuracy of New-
ton's law of gravitation, which had been well established by

experience and had been believed for centuries to be exact
;

with the failure in stars of the law of the indestructibility of

matter
;
and with the discordance of the classical undulatory

theory of light with the group of facts known as quantum
phenomena. For twenty years physical science has been

modifying and reconstructing its most fundamental laws as a

result of new knowledge. The reconstruction has followed,

and will continue to follow, the old method, but the results

will be different because new facts have to be fitted in. Will

modern physics suffer in turn the fate of the old? Perhaps;

nobody knows. But in the circumstances we must raise a

group of questions more fundamental and general than any

physical law. Have recent developments shown that scientific

method itself is open to suspicion, and if so, is there a better

one? Just how much do we mean when we assert the truth

of a scientific generalization? When we have made such a

generalization, what reason have we for supposing that further

instances of it will be true ?

1-3. The answers to these questions may be stated at once.

There is no more ground now than thirty years ago for doubt-

ing the general validity of scientific method, and there is no

adequate substitute for it. When we make a scientific genera-
lization we do not assert the generalization or its consequences
with certainty ;

we assert that they have a high degree of pro-

bability on the knowledge available to us at the time, but that

this probability may be modified by additional knowledge.
Our answer is that returned to the doubter by the second

shade. The more facts are shown to be co-ordinated by a law,

the higher the probability of that law and of further inferences

from it. But we can never be entirely sure that additional

knowledge will not some day show that the law is in need of

modification. The law is provisional, not final; but scientific

method provides its own means of assimilating new know-
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ledge and improving its results. The notion of probability,

which plays no part in logic, is fundamental in scientific in-

ference. But the mere notion does not take us far. We must

consider what general rules it satisfies, what probabilities are

attached to propositions in particular cases, and how the

theory of probability can be developed so as to derive esti-

mates of the probabilities of propositions inferred from others

and not directly known by experience.

At the same time a remarkable thing happens. It is found

that general propositions with high probabilities must have

the property of mathematical or logical simplicity. This leads

to a reaction upon the descriptive part of science itself. The
number of possible methods of classifying sensations is

colossal, perhaps infinite. But the importance of simple laws

in inference leads us to concentrate on those properties of

sensations that actually satisfy simple laws as far as they have

been tested. Thus the classifications of sensations actually

adopted in practical description are determined by considera-

tions derived from the theory of inference
;
and probability,

from being a despised and generally avoided subject, becomes

the most fundamental and general guiding principle of the

whole of science.



CHAPTER II

PROBABILITY

Oh, it ain't gonna rain no mo', no mo',
It ain't gonna rain no mo' !

How in the hell can the old folks tell?

Tain't gonna rain no mo' !

MESSRS LAYTON and JOHNSTONE

2-1. What is probability?

Suppose that a man wishes to catch a train announced

to start at i.o p.m. When he is a quarter of a mile from the

station he looks back and sees that a church clock some
distance away indicates 12.55. Will he catch the train?

From previous experience he knows that a quarter of a mile

in five minutes means comfortable walking without wasting
time. The distance, with slight exertion, can be done in four

minutes. Hence he may reasonably expect to catch the train,

especially if he hurries slightly. But he has to get a ticket

before he will be admitted to the platform. If he finds nobody

waiting at the booking office this is a matter of ten seconds
;

but if there is a queue of ten people it will take two minutes,

and he has no means of knowing which will occur in this case.

Again, though the church clock is usually reliable, it has been

known on a few occasions to be as much as three minutes

slow. If that is so on this occasion, and the train is punctual,
his chance of catching the train disappears. On the other

hand, if the train is a few minutes late, as sometimes happens,
he will catch it even if there is a queue and the clock is slow.

Further, there is always the possibility of something quite

unforeseen, such as an accident on the line. In that event

the 11.14 train may arrive at 1.30 and his problem will be

solved.

Now we notice that in this situation the man has some
definite information, which is relevant to the proposition "he
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will catch the train". But numerous other possibilities, none

of which he can foresee, are also intensely relevant. Therefore

his available knowledge, though relevant to the proposition
at issue, is not such as to make it possible to assert definitely

that this proposition is true or false. Further, extra data will

have a definite effect on his attitude to the proposition. If he

meets an astronomer whose watch has just been compared
with a wireless time signal, and who assures him that the

church clock is accurate, he feels more confident. On the

other hand, if a crowded omnibus passes him he expects his

worst fears about the queue to be verified. Thus the attitude

to the proposition under discussion does not amount to a

definite assertion of its truth or falsehood
;
it is an impression

capable of being modified at any time by the acquisition of

new knowledge.

Probability expresses a relation between a proposition and

a set of data. When the data imply that the proposition is true,

the probability is said to amount to certainty; when they

imply that it is false, the probability becomes impossibility.

All intermediate degrees of probability can arise.

The relation of the laws of science to the data of observa-

tion is one of probability. The more facts are in agreement
with the inferences from a law, the higher the probability of

the law becomes
;
but a single fact not in agreement may re-

duce a law, previously practically certain, to the status of an

impossible one. A specimen of a practically certain law is

Ohm's law for solid conductors. Newton's inverse square
law of gravitation first became probable when it was shown

to give the correct ratio of gravity at the earth's surface to the

acceleration of the moon in its orbit. Its probability increased

as it was shown to fit the motions of the planets, satellites,

and comets, and those of double stars, with an astonishing

degree of accuracy. Leverrier's discovery of the excess motion

of the perihelion of Mercury scarcely changed this situation,

for the phenomenon was qualitatively explicable by the attrac-

tion of the visible matter within Mercury's orbit. Newton's



10 PROBABILITY

law was first shown to be wrong, as a universal proposition,
when it was found that such matter could not actually be

present in sufficient quantity to account for the anomalous

motion of Mercury.
The fundamental notion of probability is intelligible a

priori to everybody, and is regularly used in everyday life.

Whenever a man says "I think so" or "I think not" or "I

am nearly sure of that
"
he is speaking in terms of this con-

cept; but an addition has crept in. If three persons are pre-
sented with the same set of facts, one may assert that he is

nearly certain of a result, another that he believes it probable,
while the third will express no opinion at all. This might

suggest that probability is a matter of differences between

individuals. But an analogous situation arises with regard to

purely logical inference. One person, reading the proof of

Euclid's fifth proposition, is completely convinced; another

is entirely unable to grasp it; while there is at any rate one

case on record when a student said that the author had ren-

dered the result highly probable. Nobody says on this

account that logical demonstration is a matter for personal

opinion. We say that the proposition is either proved or not

proved, and that such differences of opinion are the result of

not understanding the proof, either through inherent in-

capacity or through not having taken the necessary trouble.

The logical demonstration is right or wrong as a matter of the

logic itself, and is not a matter for personal judgment. We say
the same about probability. On a given set of data p we say
that a proposition q has in relation to these data one and only
one probability. If any person assigns a different probability,

he is simply wrong, and for the same reasons as we assign in

the case of logical judgments. Personal differences in assign-

ing probabilities in everyday life are not due to any ambiguity
in the notion of probability itself, but to mental differences

between individuals, to differences in the data available to

them, and to differences in the amount of care taken to

evaluate the probability.
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2'2. The mathematical discussion of probability depends on
the principle that probabilities can be expressed by means of

numbers. This depends in turn on two deeper postulates :

1 . If we have two sets of data p andp' y
and two propositions

q and q', and we consider the probabilities of q given p, and of q'

givenp', then whateverp,p', q, q' may be, theprobability ofqgiven

p is either greater than, equal to, or less than that of q' givenp'.
2. All propositions impossible on the data have the same

probability, which is not greater than any other probability;

and all propositions certain on the data have the same proba-

bility, which is not less than any other probability.

The relations greater than and less than are transitive
;
that

is, if one probability is greater than a second, and the second

greater than a third, then the first probability is greater than

the third. If one probability is greater than a second, the

second is said to be less than the first
;
and if neither of two

probabilities is greater than the other we say that they are

equal. This postulate ensures the existence of a definite order

among probabilities, such that each probability follows all

smaller ones and precedes all greater ones.

Such an order once established, we can construct a corre-

spondence between probabilities and real numbers, so that

to every probability corresponds one and only one number,
and so that of every pair of probabilities the less corresponds
to the smaller number. When this is done the system of

numbers can be used as a scale of reference for probabilities.

But the choice is not yet unique. Obviously if xt ,
xz ,

... xn
are a set of positive numbers in increasing order of

magnitude, x^, #2
2

,
. . . xn

* are another set, eXi
, ex*, ... exn a

V V V
third, -

, , ... a fourth, and any number of
'

I + V I +#2 I + Xn
such sets can be found, such that if probabilities correspond
term by term with the numbers of one set in order of magni-
tude they will correspond equally well with those of any
other set. We need a further rule before we can decide what

number to attach to any given probability. Such a rule is a



12 PROBABILITY

mere method of working, or convention
;
it expresses no new

assumption. We decide that

3. If several propositions are mutually contradictory on the

data, the number attached to the probability that some one of
them is true shall be the sum of those attached to the probabilities

that each separately is true.

If we do this it follows at once that o is the number to be

attached to a proposition impossible on the data. For con-

sider any three mutually exclusive propositions p, q, r, and

suppose we have the further datum that/) is true. The number
attached to a proposition impossible on the data being a

y
it

follows that the numbers attached to q and r separately on

the data are both a. Hence, by our rule, since q and r are

mutually exclusive, the number attached to the proposition
that one of them is true is 2a. But the proposition "q or r is

true" is itself impossible on the data and therefore has the

number a attached to it. Hence 2a = a
y
and therefore a = o.

Again, let us consider any set of m equally probable and

mutually contradictory propositions, and call the number
attached to any one of them, on the same data, x. If we
select any / of them, the number attached to the proposition
that one of these / is true is Ix, by our rule.

Now take / = m, and suppose that on our data there is just

one true proposition among the m, but that we have no means

of knowing which it is. The number attached to the proposi-
tion that one of the m propositions is true is mx. But on our

data this proposition is certain, and therefore mx is the

number corresponding to certainty, which is a definite constant

by Prop. 2. We therefore choose i as the constant to be

attached to certainty. This is another convention. Thus

mx = i
,
and we derive the rule :

4. If m propositions are equally probable on the data and

mutually contradictory, and one of them is known to be true,

each has the number i/m associated with it. Further, the pro-

position that one out of any I of them is true has the number l\m

associated with it.
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The conditions for the application of this method are prac-

tically realizable. Suppose that m balls, one of them with a

characteristic mark on it, but indistinguishable by touch,
were placed in a bag and shaken. / balls are then withdrawn.

Then the proposition that any particular ball is the marked
one is inconsistent with the proposition that any other is

marked, and all such propositions are equally probable. We
have therefore a set of equally probable and mutually ex-

clusive propositions, m in number. Our rule therefore has

a practical application. Also m may be any integer, and / may
be any integer less than m or equal to it. Hence

5. Any rational proper fraction, including o and i, can be a

probability number.

We shall call the class of probabilities expressible by
rational fractions jR-probabilities.

It follows from this that any probability can be made to

correspond to a real number, rational or irrational. For any

given probability P either corresponds to a rational fraction

or does not. In the former case the proposition is granted.
In the latter case every ^-probability is either greater or less

than P. Hence P divides the /{-probabilities into two classes

7?! and ^ >
such that the probabilities in R are all less than

P and those in R2 are all greater than P. Also, since the

relation
"
greater than" among probabilities is transitive,

every fraction corresponding to an R2 probability is greater
than every fraction corresponding to an R1 probability. Hence
P determines a cut in the series of rational fractions. But this

is precisely the method of defining a real irrational number
;

when it is specified which rational fractions are on one side

of the cut and which on the other side, there is one and only
one real number that can occupy the cut. We then associate

the probability P with this number. In this way we arrive

at the result :

6. Every probability can be associated with a real number,

rational or irrational.

We still have to prove that the results given by our rules
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are consistent
;
that is, if a probabilityP is greater than another

probability ), that the number associated with P by our rules

is greater than that associated with Q. Suppose first that

P and Q are both ^-probabilities. Then we can find four

integers /, m, r, $ so that the number associated with P is l/m
and that associated with Q is r/s. Now consider a class of ms

mutually exclusive propositions containing one true one. We
may divide them up into m sets of s each

;
one and only one of

these sets contains the true proposition. The probability-

number that one of / of these sets contains the true proposi-
tion is Ijm. But this is also the probability-number that one

of Is propositions selected from the original ms propositions

shall be the true one, which by our rule is Is/ms and equal to

l/m, as it should be. Thus l\m is the number associated with

the proposition that one out of the Is alternatives is true;

similarly r/s is associated with the proposition that one out

of rm alternatives is true. If then P is greater than Q, the

number of alternatives needed to give probability P must

exceed that needed to give probability Q; therefore Is is

greater than rm. But this is equivalent to saying that l/m is

greater than r/s; and therefore the greater probability is

associated with the greater number.

Consistency is therefore proved for jR-probabilities. For

others the result is easily generalized. For if two non-rational

probabilities are associated with real numbers a and b, of

which a is the greater, we can find a rational fraction l/m

lying between them. Then the probability associated with a

is greater than that associated with l/m, and that associated

with l/m is greater than that associated with b. Hence, in

virtue of the transitive property of the relation more probable

than, the probability associated with a is greater than that

associated with 6. In other words, the greater number corre-

sponds to the greater probability.

We have seen how definite numbers can be associated with

probabilities, so that the higher number always corresponds

to the higher probability. In consequence of our fundamental
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assumption our rules always imply the existence of a definite

probability-number. The rules, as we stated before, are con-

ventions and not hypotheses ;
for if the probability-number

assigned by our rules is #, any function of x that always
increases with x would satisfy the fundamental assumption.
But the choice that we have made seems to be far the most

convenient. Henceforth we shall have no need to speak of

probabilities apart from their associated numbers, and when
we speak of the probability of a proposition on given data

we shall mean the number associated with the probability by
our rules.

2'3. We now introduce the notation P (p \ q) for the proba-

bility of the proposition p on the data q*. It may be read

"the probability of p given q". We also adopt the following
notations from mathematical logic.

~p means the contradictory of p, that is, the statement

th&tp is untrue. It is read "not/>".

p v q means the disjunction of p and q, that is, the pro-

position that at least one ofp and q is true . It applies whetherp
and q are consistent with each other or not. It is read "porq".

* W. E. Johnson and J. M. Keynes use the notation p/q for the proba-
bility of p given q. The disadvantage of this notation is that the oblique
stroke is a recognized device for printing fractions. As actual fractions

will often occur explicitly in this work it seems desirable to avoid the

confusion in readirig that would arise from a similarity in notation.

In the earlier papers by Wrinch and Jeffreys f the notation P(p:q)
was used. The use of P calls attention directly to the fact that the number
is a probability-number, and therefore to the fact that the elements within
the bracket are propositions, and avoids complexity when the product of

several probabilities has to be written. But the colon has the drawback
that in the notation of mathematical logic it is often wanted for a bracket.

The vertical stroke also has a meaning in mathematical logic, but there

is no likelihood of confusion.

t "On Some Aspects of the Theory of Probability ", Phil. Mag. 38,

1919, 715-731. "On Certain Fundamental Principles of Scientific In-

quiry", Phil. Mag. 42, 1921, 369-390; (second paper), Phil. Mag. 45,

1923, 368-374. "The Theory of Mensuration", Phil. Mag. 46, 1923,
1-22. "The Relation between Geometry and Einstein's Theory of Gravi-

tation", Nature, 106, 1921, 806-809.
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p . q means the proposition that/) and q are both true. It is

called the joint assertion of p and q, and is read "p and q".
These notations may be combined. Thus ~ (p q) means

the proposition that p and q are not both true, and therefore

is equivalent to ~p v ~ q.

Evidently

p) = H P(~p\p) = o. (i)

2-31 . Now suppose we have a set of data h. Then the following
four propositions are mutually exclusive: p.q, ~p-q, p~q y

~ P ~ ? BV our original rule the probability that one of

p . q and p . ~ q is true is the sum of their probabilities

separately. But one of p . q and p . ~ q is true if, and only

if, p is true.

Hence

~q\h). (I)

Similarly

P(q\h) = P(p.q\h) + P(~p.q\X). (2)

By addition

P(~p.q\h). (3 )

But the disjunction p v q is true if and only if one of p . q,

~p . q, and p . ~ q is true. Hence

P(p vq | h)
= P(p . q | h) + P(p . ~q \ h)

+ P(~p.q\h), (4)

and therefore, comparing the last two equations, we have

q\h). (5)

2-32. Consider next a class of n propositions, of which we

know that one and only one is true, and any one is as probable

as any other. Then if any m of them are selected the proba-

bility that one of these m is true is m/n. Let q denote the
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proposition that one of these m is true, and h the data we had

initially. Then

Consider another class of the original propositions and let p
denote the proposition that some member of this class is true.

Then the proposition that p and q are both true is the pro-

position that some proposition in the common part of the two

classes is true. Let the number of propositions in the common

part be /. Then

= (//m)(m/). (2)

Now consider P (p \ q . h), the probability that/) is true given
h and q. h and q are both true if the true proposition is in-

cluded in the class of number m. p is true, given q and h, if

the true proposition is one of the common part, of number /,

given that it is one of the class of number m. Hence

j.A) = //, (3)

and finally

P(p.q\h)-P(p\q.h)P(q\h). (4)

This proposition is of capital importance. We have proved it

for cases where p and q are expressible as disjunctions of

equally probable and mutually exclusive alternatives. It can-

not be proved in general without some further assumption.
If P (p . q | h) was a function of P (p \ q . h) and P (q \ h),

different from their product, then we could choose /, m, and

n so as to make the theorem untrue in some of the cases where

we have proved it true ; but we cannot absolutely exclude the

possibility of another variable entering into the equation and

producing exceptions to the rule (4) when the probabilities

are not ^-probabilities. It does not seem worth while,

however, to consider such a possibility at present. It

will be assumed without further discussion that (4) holds

in general.

JSI 2
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2*33. We have also by symmetry

P(p.q\h) = P(q\p.h)P(p\h), (5)

and therefore

p (P I *) <6>

This theorem yields as an immediate consequence the prin-

ciple of inverse probability. Suppose that q is a logical con-

sequence of p and h
y
so that P (q \ p . h)

=
i, and suppose

further that q has been verified. Then P (p \ h) is the prior

probability of p before the verification and P (p \ q . h) the

posterior probability after the verification. Then our result is

that the posterior probability ofp is the prior probability ofp
divided by the prior probability of the consequence. The
more remarkable the consequence, then, the greater the in-

crease produced by its verification on the probability of the

hypothesis under test.

2'34. Again, suppose thatpl9 />2 ,
. . .pn are a number ofmutually

exclusive hypotheses such that one of them must be true. Then
for each we have a relation of the form (6), and therefore___ _ _
P (q | Pl . h) P(Pl | h) P(q | p2 - h) P(pz | h)

P(pn \q.h)_ (
.

P(q\pn .h)P(pn \hy
(I)

But 2P(pr \q.h)*=P(p1 vpt ...vpn \q.h), (2)

since the p's are mutually exclusive

=
i, (3)

since it is known that one of the p's is true. Hence each of

the fractions in (i) is equal to

i

$P(q\pr .h)P(p,W
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Therefore

ZP(,\t,.li)P(p, I*)
r=-l

This theorem* is to the theory of probability what Pythagoras 's

theorem is to geometry.

2-341. It follows at once that P(pr \q.h) can hardly ever

be unity ;
for in the fraction on the right the denominator is

the sum of the numerator and a number of other positive

terms. But if q has a small probability on all the hypotheses

except one, p l say, and a large probability on that one, and

the prior probabilities of the hypotheses are comparable, then

the posterior probability of pl may approach unity. This is

the type of inference known as a crucial test.

2*342. Again, suppose that p implies ~ q, so that

P(q\p1 .h) = o,

and that nevertheless q is verified. Then (4) shows that

This explains how the failure of a crucial test may reduce a

previously plausible hypothesis to impossibility.

2*343. It may happen that the probability of q is the same

on all the hypotheses under discussion; that is, that

P(q\P,-h)
is the same for all values of r. Then

-. (0

But the pr's are known to be mutually exclusive, and one of

them is true. Hence

and p(pr\q-fy = P(Pr\h). (a)

*
Bayes, Phil. Trans. 53, 1763, 376-398.
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Thus for each hypothesis the posterior probability is equal
to the prior probability, and the test does nothing to help us

to decide between the hypotheses. This is the case of ir-

relevance.

2-344. On the other hand suppose that q is a logical conse-

quence of h alone. Then P (q \ h) and P (q \ p . h) are both

unity, and
P(p\ q .k)-P(p\h). (i)

If for instance h consists of the primitive propositions of logic

and mathematics, and q is any demonstrated proposition of

pure mathematics, then q can be included in the data without

affecting any probability.

It may be mentioned that the case where q is implied by p
and contradicted by h cannot arise

;
for P (q \ p . h) depends

on the possibility ofp and h being data at the same time, and

this cannot happen if one implies a consequence contradicted

by the other, for then they would be inconsistent.

2-4. In all estimates of posterior probability by means of

the theorem of 2*34, the prior probabilities of the hypotheses

appear explicitly. The theorem does not therefore give definite

answers unless these prior probabilities are known
;
and here

we come upon the greatest stumbling-block in the theory of

probability.

How do we assess the probability of a proposition before

we have any means of knowing whether it is true or false?

It has often been said that assessing a probability implies

some knowledge, and that therefore we cannot assign a proba-

bility when we are in complete ignorance. This opinion must

be directly contradicted. Complete ignorance is a state of

knowledge, just as much as a statement that a vessel is empty
is a statement of how much there is in it, and the probabilities

assigned upon it are perfectly definite. If we have no means

of choosing between alternatives, the probabilities attached

to those alternatives are equal*. If there are n alternatives

* This is usually known as the Principle of Sufficient Reason.
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just one of which must be true, the prior probability of each

is i In.

The issue is fundamental. Either we can learn from ex-

perience or we cannot. The ability to learn from experience
demands the concept of probability in relation to varying

data, and the recognition of the meanings of more probable
than and less probable than. Using only rules based on these

concepts, we have shown how probabilities can be assessed.

We must either accept the results or reject the fundamental

principle and say that it is impossible to learn from experi-
ence. Whatever subject we take up, we start from ignorance
and build up knowledge by means of experience. Everybody
but a few philosophers recognizes the general validity of the

process ; and even the philosophers that say that they reject

it show by their actions that their rejection is purely academic.

Put the most sceptical philosopher in the situation described

at the beginning of this chapter, and he will behave just like

anybody else and probably express the same doubts.

But we have still not stated the method completely. Imagine
a new-born baby to have seen only two objects, one blue and

one yellow. Another object is to be introduced from outside.

What is the probability that that object will be blue? If the

alternatives are that it must be either blue or yellow the

correct probability is |. But this is the probability on the

datum that only two colours are possible. If the next object

introduced proves to be pink this datum is proved wrong,
and the fact that the probability was correctly assigned for

it ceases to be of practical interest. This is a situation

that we must accept in practice; we are often in situations

where we cannot foresee every possible alternative, and

allowance for the possibility of unforeseen alternatives must

be made.

The issue can be stated in two simple ways.

i . The new object will be either blue, yellow, or some other

colour. If we treat these as three equivalent alternatives the

probability of each is J.
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2. The new object will either have a colour known already
or a new one. If we treat these as two equivalent alternatives

the probability of each is \ and the probability that the next

object will be blue is J.

Neither suggestion is quite satisfactory. "Some other

colour" implies a choice among all possible other colours,

which may be o to infinity in number, and it is not obvious

that it can be treated as on an equivalent footing with one

definite colour*. Nor is it obvious that, when the very ex-

istence of any other colour is problematic, some other colour

is as likely to turn up as one of those already known.

The second suggestion is obviously wrong. If it were

correct to treat the known and the unknown as equivalent

alternatives, we could never, however many colours had been

observed, have any additional confidence that the next one

would have a colour already known. It therefore contradicts

our fundamental postulate, that it is possible to learn from

experience. What may be the correct answer will be indicated

in the next chapter.

2*5. But the usual difficulty in assessing a prior probability

at the beginning of an investigation does not arise from

ignorance. The customary obstacle is too much knowledge.
The statement that a probability number exists in every state

of knowledge is not the same as the statement that we know
what it is. The point may be illustrated from the purest of

pure mathematics, the theory of numbers. How many prime
numbers are there less than a billion? There is a number of

such numbers; authorities on the subject can even say ap-

proximately what it isf ;
but just exactly how many prime

numbers there are under a billion is known to nobody. It

could be found out by trial, given sufficient time ; but nobody
has yet had time to do it. This is our usual situation in as-

sessing a probability. The number of relevant facts is great,

* Keynes has, effectively, made this point. Cf. Treatise on Probability,

1921, 60.

t io12/i2 logc 10.
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and their bearing on the probability of the proposition under

discussion is difficult to evaluate precisely, though it may be

easy in general terms. In actual life we simply do not take

the trouble to evaluate the probability; we have not the time,
for nobody can remember at once or enumerate all the rele-

vant data at his disposal. If our traveller at the beginning of

this chapter stopped to evaluate the probability accurately at

any stage he would certainly miss his train.

The actual situation is therefore that the prior proba-
bilities enter into our formulae, but we do not know their

values, and they always affect the posterior probabilities. If

this were not true newspapers would employ expert cal-

culators of probabilities instead of unreliable turf tipsters.

But in scientific work, though we can never make the pos-
terior probability completely determinate, we can make it so

near zero or unity as to amount to practical certainty or

impossibility for all ordinary values of the prior probability.

This is done by repeated verification and crucial tests. We
do not know the prior probability of a scientific law when we

begin an investigation of whether it is true; we swamp the

prior probability by the number and variety of the verifica-

tions. The scientific man might, if he took enough trouble,

evaluate the prior probability accurately; but in practice he

is not interested in the accurate evaluation of a moderate

probability. He prefers to obtain such additional information

as will make the posterior probability approach impossibility

or certainty whatever the prior probability may have been;
and when that is done he no longer needs to evaluate the

prior probability. Nevertheless it leaves its traces. The

practical certainty or impossibility of an inference from

abundant experience is not the same thing as absolute cer-

tainty or impossibility, which can come only from direct

sensation or a priori knowledge.



CHAPTER III

SAMPLING

Little drops of water,
Little grains of sand
Make the mighty ocean
And the glorious land.

JULIA CARNEY

3-1. We are now in a position to discuss one of the most

important applications of the theory of probability, the theory
of sampling. The first problem is as follows: There are n

objects with a defining property a. Of these, r have a further

property b. We select at random m of the objects. What is

the probability that / of these will have the property 6?

We need a definition of what we mean by at random. We
mean that every possible selection *of m objects from the

original n is equally probable. The total number of ways of

selecting m things from a set of n is denoted by
nCm . It is

called the number of combinations of n things taken m at a

time, and it is shown in works on algebra to be equal to

/ XT >
where n \ means the product of all the integersm ! (n

-
m) I

r 6

from i up to n. There are r accessible objects with the pro-

perty b. We can select / of these in rC
z ways. The other n r

objects have not the property b\ and if the sample of m
objects contains / with the property b it must contain m /

without it. Hence in our sampling we choose m / objects

from a class of n r, and this can be done in n~rCw_ z ways.
But any selection of / objects with the property b is consistent

with any selection ofml objects without it, and therefore

the total number of ways of selecting m things so that / of

them will have the property b is
rC

l
.
n-fCrn^. But by

hypothesis all the possible
nCm selections are equally probable

and mutually exclusive, and one of them is certain to be
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made. Hence the probability that any particular one will be

made is i/
nCm , and the probability that we shall make some

one of a set of number TC
l

n~rCrn_ z
is

a (T\ L __^L~^ fj\
6 W n /~* \*j

Since the set of number m must contain either i, 2, ... or m
things with the property 4, the sum of the probabilities of

the various values of / must be unity. Hence

m
y rf* n-r(~* n(~* (~\

l^l

It is easily proved directly by algebra that this is the case.

We have

m I (n m) !

T

and therefore

(*+*) = r~l
.

~l
^ (4)

which is greater or less than i according as

(Y -i- T ^ (tvt _L T ^

/ + i is less or greater than ^ ^
. (5)n + 2

The last quantity differs from rm/n by

r + m + i 2m ...

n + 2 iftn + i)
1 W

which is always less than unity. It follows that changing /

to / + i will increase g (I) if / is less than rnr/n, save for

a fraction, and will decrease it if / is greater than that value.

Hence the most probable value of / is the integer nearest to

mr\n\ that is, the most probable sample is the fair sample ,

such that the number of things with the property b in the

sample bears the same ratio to the total number of the sample
as the number of things with the property b in the whole

class bears to the number of the whole class.
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For moderate values of n, m, r, and / the exact solution (i)

tells us all we need. But if we have a large class to begin with,

and extract from it a large sample, it can be proved (Lemma
II) that the sum of the values ofg (I) for values of / between

mr/n+p! and mr/n+p2 is very nearly (erf x erf 2)>

where

f = {2r (
n -r)m(n- m)/n*}-*p. (7)

erf vanishes for = o, but rapidly approaches + i for

moderate positive values of |, and i for negative values*.

If then i is a moderate positive number and 2 a moderate

negative one, the sum of the values of g (I) corresponding to

intermediate values of will be nearly unity. The corre-

sponding range in / is such that / varies in it by a moderate

multiple of

H =
{zr (n-r)m(n- m)/nrf. (8)

Then H may be taken as a measure of the range of values

of /that are probable. We notice that if r and n r are both

moderate fractions of n, so that the original class was not

overwhelmingly b or not-i, and if the sample is only a small

fraction of the original set, so that m/n is small, then

2r (n
-

r) (
-

m)jn\ (9)

which is at most |, will be comparable with its maximum

value. Then H is about (^m)^. The range of probable devia-

tion from a fair sample is of the order of nfi, where m is

the number of the sample. In general the probability that

the number of i's in the sample is between / H, where /

is the most probable value, is 0-843 >
^e probability that it

* The following table will illustrate the point.

f erf | erf f
o o i-o 0-84
0-2 O-22 I'4 O'95
0-4 0-42 i 8 0-989
O-6 O'6o 2'2 0-998
0-8 0-74 oo i-ooo

For negative values erf (
- f) = - erf .
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is between 7 2H is 0-995 > an<* the probability that it is

between / 3// is indistinguishable from unity.
As a specimen of the numerical results, consider the case

where the original class is equally divided, so that r = \n and

H = GW*. Take m = I0 - Then / =
50, # =

7, and the

probability is 0-995 that ' W*U he between 36 and 64. If in-

stead we take a sample of number 10,000, / = 5000, H =
71,

and the probability is 0-995 that / will lie between 4858 and

5142. We notice the large size of the sample that has to be

taken to establish a high probability that the sample will

be fair within i per cent, of its total number.

3-2. In the above discussion we have supposed the com-

position of the whole class known, and we have determined

the probabilities of different compositions of the sample.
The usual problem of sampling is the inverse one : given the

composition of the sample, what inferences can we draw

about the composition of the whole class? We make use of

formula 2-34 (4). Here let pr denote the proposition that

there are just r things in the original class with the property
b

;
then P (pr \ h) is the prior probability that this value of r

is correct. Let us denote it by/(r). The verified proposition

q is here the fact that the known sample consists of / things

with the property b and m / things without it. Then
P (q | pr . h) is the probability that a sample, m in number,
drawn from a class known to consist of r things with the

property and n r without it, would contain just / things

with the property. This is the function we called (/), namely,

rC* n-rC*
/A Z ^m-l i \

g (/)
=

. (I)
^"m

Since / is now to be kept constant while r varies, we shall

now call this function h (r). Now applying 2-34 (4) we have
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As usual we can make no further progress without some know-

ledge of the form of the prior probability /(r). If there is no

previous reason to think one value of r more likely than any

other, / (r) is the same for all values of r. In that case the

posterior probability reduces to

-^
(3)

S "C, *-'Cm_,
r-0

It is easy to show that this has its greatest value when r/l is

as near as possible to n/m ; that is, the most probable value of

r is found by supposing that the known sample is a fair one.

Suppose that we wish to know the probability that the

next object examined will have the property b. Denote this

proposition by q'. Then the probability required is

P(q'\q.h),

Since one and only one of the propositions pr is true

\q.h)P(q'\pf .K). (4)
r

To evaluate P (q
r

\pr *h) we must suppose a definite value

of r chosen. / things with the property b have already been

removed, and therefore r / remain. The total number of

things left to choose from is n m. Hence the probability of

picking a thing with the property b at the next attempt is

which is equal, by Lemma HI, to

)( +1)1
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We notice that the probability of drawing another thing with

the property b at the next attempt depends wholly on the

composition of the sample already drawn, and not on n. If

m is large and / equal to m, this probability approaches unity,
but never quite reaches it.

Consider next the probability that the whole of the class

may have the property b. For the possibility to arise it is

obvious that all the known instances must be i's; that is,

/ must equal m. In this case r = n, and

m + 1
,

.-
n + i

' (7)

This approaches unity only when m is nearly n, that is, when

nearly the whole of the class has been examined. It appears
that pure sampling methods will never establish a high pro-

bability for the proposition that the whole of the set is of one

type.

3'3. The above analysis, which is due to Laplace, has been

repeatedly attacked. It obviously depends fundamentally on

the form of the function /(r), which is taken constant by

Laplace, and represents the prior probability that a value of

r is correct. But if our data included the proposition that the

number of balls with the property b in the bag is just s
y say,

the prior probability / (r) is i for r = s and zero for all other

values of r. Referring back to 3*2 (2) we see that the posterior

probability of a given r is also i for r == s and zero for all other

values of r
y
and is entirely unaffected by the composition of

the sample as we should of course expect. Also the objects

unexamined are n m in number, and include s I with the

property b. Hence the probability that the next one examined
f _ /

has the property b is -- ,
and obviously decreases as / in-

creases. We should of course expect this; the more ft's have
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been examined the less likely are we to find one among the

unexamined objects. But it is qualitatively different from the

result of Laplace's theory, which indicates that the probability
of a b at the next trial increases steadily with the number of 6's

in the sample. Obviously if we take / = s the whole of the i's

have already been removed and the probability that one will

be found at the next trial is zero.

3-31. The form of the prior probability is therefore a matter

of great importance. Laplace's theory has often been criti-

cized on the ground that there is no reason to suppose that

f(r) is constant, and therefore that the theory rests on no

foundations whatever. But this criticism misses the whole

point of the theory. It is an instance of that already dis-

cussed in 2-4. Either we have reasons to prefer one value of

r to another or we have not. In the latter case/ (r) is definitely

constant and Laplace's theory is correct. In the former case

Laplace's theory is simply inapplicable. The theory is in fact

right when we have no previous knowledge of the composition
of the class, but becomes inapplicable when we have relevant

knowledge before we take the sample. The introduction of

the function / (r) makes it possible to allow for previous

knowledge.

Though Laplace's theory is correct in the circumstances

specified, the cases where it is not applicable are very
numerous and important. Suppose for instance that there

are n balls in a well-shaken bag, that they are known to be all

of the same size, and that we have been told that one of them

is a cricket ball and red. Then there is a strong prior pro-

bability that all are cricket balls and red. The only likely

alternative is that hockey balls, which are of the same size but

white, may be mixed with them, and we know that appliances

for different games are usually kept separate. If then r is the

number of red balls in the bag, / (r) is very large for r = n

and small for all other values.

On the other hand if we have merely observed by feeling
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that the balls are about the size and weight of hockey or

cricket balls, then/(r) is large for r = o and r = n and small

for intermediate values. The extraction of a single ball then

establishes practical certainty that all the balls are cricket

balls or all hockey balls, as the case may be*.

Again, suppose that the balls are known to be tennis balls

and to be awaiting use in a match. If / of them have been

examined and found white, the probability that the next will

be white, on Laplace's theory, is (/ + i)/(/ + 2). If / = 2 this

is f . But the actual probability in these circumstances is

nearly unity, since one knows by previous experience that

only new and white balls would be used in a match. If on the

other hand the balls belong to an ordinary player's set towards

the end of the summer there is a considerable prior pro-

bability that most of them will be green, and this affects the

posterior probability in the opposite direction. In all these

cases the departure off (r) from constancy materially affects

the posterior probability. In addition we have the general

knowledge that like things tend to be associated, as in the case

of the cricket and hockey balls. Allowing for this we should

expect/ (r) to be larger for r small and r nearly equal to n than

for intermediate values. In some cases where /(r) is not

uniform it can be evaluated and the posterior probability can

be found completely. But the determination of/(r), when it

is not constant, is usually troublesome, and we shall show that

it is also often unnecessary.

3-4. Suppose now that the original class had numbef n
y

where n is very large, and that the number of the sample, m y

is also large. The posterior probability that the whole class

contained r things with the property b is

See also later, 10*1.
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where, by Lemma II,--
\2TTxyr (n-r)/

# = w/w ; y = (n m)/n ; (2)

/ = rm/n + p. (3)

We are now treating / as known and r as variable
;
the problem

is the inverse of that of 3-1. The exponential is greatest when

p = o, that is, when
r = nl/m = r

, (4)

say. Put r r = nO> (5)

so that measures the departure of the composition of the

whole class from that of the sample. Then

p = l-rm/n = (mln)(ri-r) (6)

= m6. (7)

The index of the exponential is therefore, neglecting
3

,_ _ __
2 rQ (n r

)
m (n m) 2 l(m 1) (n m)

= - we* = - ^
2
, (8)

say. When m is large absolutely, but small compared with w,

A2 is greater than 2/w, becoming equal to this minimum when
/ = \m. As in the case of direct sampling, therefore, the ex-

ponential factor is insignificant except within a range of

values of 6 comparable with m~^. In these conditions we may
ignore the variation of r in the factor outside the exponential
in

(i),
and simply treat h (r) as proportional to the exponen-

tial. The probability that the true value of r lies within a given

range is then proportional to the sum of the values of

/WA(r)
for values of r within that range. When m is large, h (r)

is negligible except when 0, which measures the departure of

the sample from fairness, is of order m*. The whole range

of possible variation of r makes 6 vary by unity. In these con-

ditions, if f(r) is a function of such types as usually arise,
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appreciable contributions to S/(r) h (r) arise only from the

range of values that make the exponential moderate, and

within this range/(r) will not vary greatly. In ordinary cases

f(r) may be considerable for r small and r nearly equal to n
y

and may have one minimum between. Then when m is great
we can treat /(r) as constant within the range that matters,

and it cancels from the numerator and denominator of the

posterior probability. The sum may now be replaced by an

integral, and the probability that r lies between r + n8 and

rQ + n02 is proportional to
*

exp ( h*6*) dd or
j

'

e~?d.
J el J !

Hence the probability that r lies between r + n0l and
rQ + n62 is

er* dS e-r d* - * (erf & - er

= i(ecMn -erfh0J. (9)

This result shows that, except in cases so remarkable that

they must be easily recognized if they arise, the actual varia-

tion of the prior probability with r is not important provided
that the sample is large. This is the real reason why it is un-

necessary in most cases to evaluate the prior probability.

Within ordinary limits its effect on the answer is negligible.

In fact the range of values of such that the truth is prac-

tically certain to lie within it is of order m~% t To make this of

order i per cent, we need a sample of number 10,000 or so
;

while the only important values of /(r) come from values of

r within a range of order i per cent, of the whole possible

range, and in such a small range we cannot expect the varia-

tion of /(r) to matter. In fact the large sample is necessary
in any case, to ensure fairness ;

and when so large a sample has

been taken that fairness is assured the results will in any case

be the same as if the prior probability was constant.

We can now sum up the position concerning the prior

probability in the theory of sampling. There is no theoretical

difficulty. The opinion that there is any fundamental objec-

JSI 3
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tion to the notion of prior probability can be maintained only
at the cost of rejecting the notion of probability, and with it

the universally accepted opinion that it is possible to start

from ignorance and gradually build up from experience
methods of predicting the truth. There are practical diffi-

culties in assessing the prior probability in many cases as they

actually arise. This is not a situation to evade, but one to

face. It could be dealt with in two ways: we may either

evaluate the prior probability or swamp it. The former

alternative is laborious and unnecessary; for in any case a

large sample is needed to make it practically certain that the

sample is a nearly fair one, and then the posterior probability
of a given departure from fairness is almost the same what-

ever the prior probability may be. We do not evaluate the

prior probability in practical sampling because we do not

need to
;
we swamp it automaticallywhen we take a sufficiently

large sample. It is this principle that constitutes the theo-

retical justification of statistical methods.

3*5, We may now return to the problem of the baby that has

seen only two objects, one blue and one yellow. What is the

probability that the next object seen will be blue? The number
of other colours in the world may be anything ;

but we can

state the issue by considering "blue or yellow" as a single

property, as opposed to "not blue or yellow". Then there

are two known instances of the property "blue or yellow"
and none of its absence. Thus in the theory of sampling
#j = / = 2, and the posterior probability that the next object

seen will be blue or yellow is (/ + i)/(w -f 2) or f , whatever

the total number of objects in the world may be. Since on

the data blue and yellow are equally probable, the proba-
bilities that the next object will be blue, yellow, or some

other colour are respectively f , f ,
and J.

It would not be legitimate to proceed by treating blue and

yellow as single independent alternatives. If for instance we
treated blue as one alternative and "not blue" as the other,
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then we should have m = 2, / = i, and the probability of a

blue object at the next trial will be . Similarly the proba-

bility of a yellow one would be
,
and taking the two to-

gether we should say that the probability that the next object
will be blue or yellow is i. This is absurd. The error is that

in treating blue as a single alternative and applying Laplace's

theory we suppose all numbers of blue things in the world

equally probable a priori \ similarly for yellow things. Thus
we have made no allowance for the fact that it is impossible
in the same circumstances for more than half the things in the

world to be blue and more than half yellow ; the prior proba-
bilities of given numbers of blue and yellow things in the

world are not independent.
The purpose of this trivial example is to illustrate the fact

that allowance can actually be made in probability estimates

for the possibility that an unforeseen alternative may arise.

3-*



CHAPTER IV

QUANTITATIVE LAWS

'Tis a lesson you should heed,

Try again ;

If at first you don't succeed,

Try again;
Then your courage should appear,
For if you will persevere
You will conquer, never fear,

Try again.
WILLIAM EDWARD HICKSON

4-1. The majority of the laws of physics are of the form

y =/(*!, #2 , #3, **)> (i)

wherey, x1 ,
x2 ,

#3 ,
. . . xn are quantities determined by measure-

ment, and / is a known mathematical function. Such a law

enables us to calculate y when the x's are known. These laws

are established by repeated verification; it is found in

numerous instances that the observed value ofy agrees closely

with that calculated from the law, and on the strength of this

verification it is asserted that the law holds in general. Super-

ficially the generalization bears a resemblance to that involved

in Laplace's theory of sampling when all the objects examined

have hitherto been of the same type, but we shall see that the

differences are very great. For instance, we may say that the

position of Jupiter, as calculated from the law of gravitation,

has agreed with prediction every time it has been observed

during a revolution. But at the best the number of veri-

fications is finite. What is the probability that the position of

Jupiter always agrees with the calculated value? We are here

generalizing from a finite number of verifications to an in-

finite class of possible instances, and if we apply the ordinary

rules of sampling we must say that the probability is in-

finitesimal. On the other hand any astronomer would say
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that it is practically certain that the position of Jupiter always

agrees with prediction unless indeed he said it was abso-

lutely certain.

42. The quantitative laws of physics therefore seem to be

in a somewhat different position from the rules established

by sampling, and further inquiry into their nature is desirable.

Let us consider first a simple experiment. A solid of revolu-

tion can roll down an inclined plane, and its displacement is

observed every fifth second after it starts from rest. If we
denote the time by t and the displacement from the starting

point by x 9 the observations are as follows :

t (seconds) o 5 10 15 20 25 30
x (centimetres) o 5 20 45 80 125 180

Then we can say that at all the instants of observation the

displacement is connected with the time by the formula

5* = '
2

- (2)

On the face of it this statement is a pure description of ob-

served facts. The phenomenalist school of critics would say
that it is nothing more

;
and many physicists think that they

belong to this school. But the facts of observation would be

fitted equally well if the displacement was really connected

with the time by the formula

5* = t* + t (t
-

5) (t- 10) (t
-

15) (t
-

20)

(*-aS)(*-3o)/0> (3)

where f(t) may be any function whatever that is not infinite

at / = o, 5, 10, ... 30 seconds. The law (2) is indeed not the

only description that fits the data ;
it is only one of an infinite

number of laws that would fit the data equally well. Its

special quality that distinguishes it from the other possible

laws is its simplicity. In practice no physicist, looking at the

above data, would hesitate to say that the law (2) is the

correct way of expressing them. But different physicists

would disagree about their reasons for adopting it. Some
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would say that it is a matter of strict necessity. This is just

false
; there are an infinite number of other alternatives that

might be adopted if we chose. We want to know why there

is only one that we would choose. Others would say that

the simplest law is chosen for the sake of convenience. But

a simple test would show that this is not the real reason.

Suppose we want to know where the body was 18 seconds

from the start. According to the law (2) it would be 64/8 cm.

from the starting point. But according to the more general

description (3) it might be anywhere, according to the value

of f(t) for t = 1 8 seconds. But what would happen if we
said this to a physicist? He would certainly say

"
Don't be

silly". Suppose that we pressed him, and that as a result he

was persuaded to repeat the experiment and found that the

displacement 18 seconds from the start was 55 cm. He would

still not abandon the /cm (2). He would do the whole ex-

periment again in order to find out why x/t
2 had changed;

and he would expect to find that in the new experiment the

values of x/t
2 at different times were again all equal, and

different from the value 0-2 cm./sec.
2 which he found before.

(Further, he would find this to be so
;
and he would probably

attribute the change to an alteration in the slope of the plane.

But that is not our present point.) In fact the physicist,

having once found x proportional to t
2 for a wide range of

values of t, feels a complete confidence that this rule holds

for other values of t. This confidence could not exist if he

had chosen the simple law merely because it was convenient.

He must have chosen it because, of all the laws that would

fit the data, the simplest is the most likely to be correct for

other values of the variables.

Let us put the matter in another way. Some physicists

would say that the law (2) is adopted because it is observed

to be true. But this statement is merely a mathematical pun.
What is observed is that for t = o, 5, 10, 15, 20, 25, 30

seconds, 5* = t
2

. What is asserted is that for all values of t,

$x = t
2

. The former statement is merely a concise way of
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rewriting the observations, a shorthand description. The latter

is an inference from the finite number of actual observations

to an infinite number of possible observations. To express
both by saying simply

"
$x = Z

2 "
is to use the same language

to mean two different things. In the same way, the law (3)

applied to the observed values is definitely true; but no

physicist would apply it to the unobserved values. In fact

the preference for the simple law enters the question only
when the need for making inferences arises. Convenience of

description has nothing to do with the matter, unless we
choose to say that "53?

= t* for other than observed values

of t" is a description. That is another pun; to describe an

observation that has been made obviously does not mean the

same thing as to describe an observation that has not been

made. The word description is here restricted to descriptions

of observed events
; other events are inferred, not described.

We have seen that if we have a set of possible general laws

pr and a verified consequence q whose probability on all the

laws is the same,

S P(p, I*)
r=l

In other words, P(pr \q. h)/P (pr \ h) is the same for all the

laws. Now in our case law (2) and all the laws (3) imply the

observed facts. Hence their posterior probabilities are in the

same ratios as the prior probabilities.. The physicist 's con-

fidence in the generality of the simple law in comparison
with complex ones that fit the observations equally well must

therefore correspond to an overwhelmingly greater prior

probability for the simple law. Here, then, we come upon
the essence of the problem. The prior probability of a simple
law is so great in comparison with those of complex ones that,

from a physicist's point of view, the latter are not worth

considering. It is this fundamental principle that accounts

for the physicist's preference for the simple law.

The above argument is actually an understatement of the
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situation. In the inclined plane experiment the observations

would not, in fact, fit the simple law exactly. We might get
a series of values like the following:

t (seconds) o 5 10 15 20 25 30
x (centimetres) o 5 19 44 81 124 178

These do not fit exactly the law $x = t
2

,
or any other simple

square law. But it would be easy to find a polynomial of the

form

that would fit the observations exactly. Nevertheless the

physicist would stick to the square law. His expressed reason

would be interesting. It would be that any set of seven

values whatever can be represented by an expression with

seven adjustable constants. Consequently the expression so

obtained tells us nothing with regard to the reliability of the

determination. The very fact that the representation is of

such generality that it can always be made to fit the data

exactly is considered an argument against it, not for it. With

regard to the original square law, he would say that the ob-

served values never differ from the calculated ones by more

than i cm., except for the last; this differs by 2 cm., but at

the time the velocity is 12 cm./sec., and the difference could

be accounted for by an error in timing of 0*17 second, while

the observations were made only to 0*2 second. In fact he

would say that the differences never exceed the admissible

errors of observation, and that the agreement of the observa-

tions with the simple law is perfectly satisfactory.

Apart from the physicist's specified reasons, which we shall

have occasion to consider later, we notice the outstanding fact

about his decision. His predilection for the simple law is so

strong that he will retain it, even when it does not fit the

observations exactly, in spite of the existence of complex
laws that do fit them exactly. Simplicity is a better guarantee
of probability than accuracy of fit. The physicist would use

the square law to predict the value of x for t = 60 seconds,
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and would expect the result to be right within a few centi-

metres, provided the plane was long enough to permit the

displacement required. He would, on the other hand, expect
the polynomial of seven terms to give a seriously wrong
answer when extrapolated to such an extent.

The actual behaviour of physicists in always choosing in

practice the simplest law that fits the observed facts therefore

corresponds exactly to what would be expected if they re-

garded the probability of making correct inferences as the

chief determining factor in selecting a definite law out of an

infinite number that would satisfy the observations, and if

they considered the simplest law as having far the greatest

prior probability. It is not explained by the reasons that are

usually stated.

4'3. We may also consider the problem as one of pure theory
of probability without considering the behaviour of the

physicist. We return to the law

P(p\h). (i)

Suppose that p is the general law whose probability we are

considering, and that ql9 q2y ... qn are successive verified pre-

dictions from it. If q2 is implied by />, it is also implied by

p and ql together. Thus we have in turn

n a n _ fc ' ft' "' ?-i ' *)
I Si ?2 - ?n n)

-
p7~'\" n n IjY* Wn I Si ?2 ?n-l ")

Thus each successive verification divides the probability of

the law by the probability of the verification on the data

already known. Now if all the numbers of the form
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were less than some proper fraction r, and p had a finite

probability at any stage of the investigation, then a sufficient

number of further verifications would give p a probability

greater than unity, which is impossible. Hence we have to

choose between two alternatives :

(1) However often p may be verified, its probability on the

data is never finitely different from zero.

(2) The probabilities of the verifications, given in each

case the previous verifications, are not all less than r if r is

less than unity; that is, when the number of verifications

becomes large, the probability of the next tends to unity as

a limit.

The first alternative plainly does not agree with ordinary
belief. However sceptical one may be about a given law that

is consistent with the known facts, one would consider its

probability finite. The second alternative, on the other hand,

agrees perfectly with our fundamental belief in the possibility

of acquiring knowledge by experience. But it says nothing
about the probability of the law itself, but only of verifications

of it. It might apparently be possible to adopt the second

alternative and still suppose the probability of the general

law infinitesimal.

But the construction of a satisfactory theory on such a basis

would require a branch of mathematics that does not exist.

Let us see whether a theory of quantitative inference can be

constructed on the hypothesis that all general laws have the

same prior probability. Suppose the number of such laws to

be m, and suppose that a number of experiments have been

made to test them. Then the only survivors are those that

imply the results of the experiments, which may be summed

up in the proposition q. Each of them after the experiments
has the probability i/mP (q \ h). Thus every surviving law

has the same probability after the experiments. Also since an

infinite number of laws satisfy any finite number of measures,

an infinite number survive, and the posterior probability of

each is infinitesimal. Now suppose another verification to be
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attempted. An infinite number of results are possible, corre-

sponding to the different laws, and each result can be ob-

tained from an infinite number of laws. The probability of a

given numerical result at the next trial is therefore the ratio

of two infinite numbers; and nobody has yet succeeded in

constructing a satisfactory mathematical theory of such ratios.

Until it is done we shall say that it is impossible to construct

a theory of quantitative inference on the hypothesis that all

general laws have the same prior probability.

4*4. Our effort to avoid the assumption that general laws

have finite probabilities has thus led nowhere. Let us now
make this assumption and investigate its implications. The
number of possible laws is certainly infinite. How can an

infinite number of mutually inconsistent laws all have finite

probabilities? The answer to this question is provided by
mathematics. Consider the series

The number of terms in this series is infinite, but every term

is finite, the sum of any number of terms is less than unity,

and the sum tends to unity as we take an increasingly large

number of terms from the start. The assumption we need is

therefore that the prior probabilities of possible general laws

are the terms of a convergent series whose sum to infinity is

unity. We have been led to it purely from the assumption
that it is possible to construct a theory of quantitative in-

ference; if this can be done such an assumption about the

prior probabilities of laws must be made. Further, we see

now that it fits in perfectly with our discussion of the relation

of simplicity to prior probability ;
all we need to add is that

the simpler the law is, the earlier its probability occurs in the

series. Simplicity is a property that is easily recognizable

when it is present, and we say that the order of decreasing

simplicity among laws is also the order of decreasing prior

probability.
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If we make this assumption we find that there must be a

severe restriction on the laws that are admissible at all. The
terms of an infinite series are N in number*, and according
to our rule no law whose probability is not a term of the series

can ever be established by experience. Hence the quanti-
tative laws capable of being established are N in number, and

our problem is to specify a set of laws, N in number, that

will include all laws required, or likely to be required, in

physics.
In one sense it might be said that the problem is trivial,

since the number of known physical laws at any time is finite,

and likely to remain so. Nevertheless there is a theoretical

problem apart from the actual facts; we are concerned not

only with what is true, but with what is possible or rather

with what it would be possible to establish.

It is plain that not all functions are admissible in laws
;
for

the number of all functions is C, which is greater than N .

The same applies to the class of continuous functions. Even
if we restrict the functions to be analytic, the number of such

functions is still C, or 2^0, which is greater than N
;
not all

analytic functions can occur in physical laws. If a physical

law contains one numerical constant capable of continuous

variation, the number of possible values of that constant is C;
if the coefficients in the expression of an analytic function in

a power series are restricted to be rational fractions, the

number of functions is still C. The class of all polynomials
of degree less than some finite number, and with rational

fractions or algebraic numbers as coefficients, has number N ,

but it does not include trigonometrical functions, which do

occur in physics, and therefore is not sufficiently general.

Transcendental functions such as exponential, trigono-

metric, and Bessel functions do occur in physics, but we

may notice that they are hardly ever derived directly from

* S is tne number of positive integers, and is the smallest infinite

number. C is the number of values of any quantity capable of continuous

variation; and in particular is the number of real numbers. See Appendix.
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observation. They arise first in theoretical work, and it is not

till afterwards that it is verified that they do satisfy the results

of observation. In the theoretical work they arise as the solu-

tions of differential equations of finite order and degree.

4*5. Consider then the possibility of defining a class of

differential equations, NQ in number. Clearly no numerical

coefficient in such a class may be capable of more than N
values, otherwise the hypothesis would be vitiated at the start.

But if each equation is restricted to be of finite order and

degree, and each coefficient in it to be capable of N values at

most, then the conditions are satisfied. (See later, Appendix.)
The natural possibilities to consider for the coefficients are

that they may be whole numbers or rational fractions. The
latter alternative appears more general, but is not so in fact,

for any equation with rational coefficients can be converted

into one with integral coefficients by merely multiplying by
the least common denominator. There is indeed a definite

advantage in choosing the former alternative ;
for an equation

involving only integers with no common factor is equivalent

to no other equation with the same property, whereas an

equation with fractional coefficients is equivalent to an in-

definite number of others with fractional coefficients. Thus
the use of fractional coefficients would permit ambiguities in

the arrangement of the equations in order of decreasing sim-

plicity, which are avoided by the restriction to integers. All

our data are therefore consistent with the following general

principle :

Every quantitative law can be expressed as a differential

equation of finite order and degree, in which the numerical

coefficients are integers.

In the arrangement of such equations so that they corre-

spond one by one with the positive whole numbers, we should

begin by rationalizing each equation if it already contains

roots. Then we should group the equations so that those

with equal values of the sum of the order, the degree, and the
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absolute values of the coefficients, were classed together. The
number in each group is finite. We should then arrange the

groups according to increasing values of this sum, and adopt
some convention regarding the arrangement of the equations
in the same group. Thus the equations occurring early in the

series would have low order and degree, and the numerical

coefficients in them would be small integers. They would

therefore be simple, as the term is generally understood. We
may indeed give a precise definition of the complexity of an

equation by saying that it is the sum of the order, the degree,
and the absolute value of the coefficients. If the complexity
is thus defined, it is a determinate mathematical problem to

say how many differential equations have complexity less

than or equal to n. But it is difficult. When n is large the

number is certainly larger than 2n ;
I have not obtained a

closer estimate. This, however, is enough for present pur-
oo

poses. The series S i/n does not converge. Hence the total
n=l

probability of the laws of complexity n must decrease

faster than i/w, and any one individually must have a prior

probability less than 2~n
/n.

It may be objected that some of the arbitrary constants in-

volved in the solutions of the differential equations of physics
are capable of continuous variation within definite ranges,

and that therefore the true number of solutions is C, and we
are no further forward. The reply is that the differential

form, not the integrated one, is the fundamental physical

law. The arbitrary constants, so called by mathematicians,

are not arbitrary in physics; they are determined by the

boundary conditions, and it seems that these conditions, in

their fundamental forms, involve no more arbitrariness than

the differential equations.

It was also objected, when this suggestion was first made

in a slightly different form, that the restriction to differential

equations was inconsistent with the ideas about the quantum

theory that prevailed in 1921. My own view at the time was
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that the orbits in an atom, in a stationary state, are describ-

able by differential equations of the usual type (this was then

the current opinion) and that the quantum jumps, involving
discontinuous changes of velocity, should be regarded as

boundary conditions. But there have been many quantum
theories since then. Those of Heisenberg and Dirac appear
to have replaced both the ultimate differential equations and

the conditions of the quantum jumps by finite difference

equations; and there is no objection to supposing that the

ultimate laws are finite difference equations, for these may
equally well be restricted to a class X in number. On the

other hand Schrodinger's theory makes a single differential

equation account for everything, and is entirely consistent

with the postulate as it stood.

4-51. I do not wish, therefore, to maintain that this form

of the simplicity postulate is necessarily the final one. I do

maintain, however, that a postulate restricting the number
of admissible laws to N is necessary, and that the prior

probabilities must decrease rapidly with decreasing simplicity.

Modifications of the present form may be needed to admit

such systems as Dirac 's; also in the laws that appear in the

general theory of relativity, and indeed in elasticity, the

simplicity of the symmetry relations may compensate for

the large numbers of terms in the equations. Meanwhile

the present form will serve our purposes.
Our everyday ideas on this subject, as in most others, are

a complicated system based in part on experience and in

part on principles believed independently of experience.

The latter we call a priori. To disentangle the latter we
have to argue backwards, just as in logic the discovery of

the primitive postulates was subsequent to a great develop-
ment of mathematics by forward reasoning. By analysing

the processes involved in our forward scientific reasoning

we detect the fundamental postulate that it is possible to

learn from experience. This is a primitive postulate, pre-
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sumably on the frontiers between a priori and empirical

knowledge. The status of the laws of probability and the

simplicity postulate is that of inferences from this principle.

46. The variables in the differential or difference equations
include the time and the co-ordinates of position. These are

still generally believed capable of continuous variation. But

these are not real variables, but apparent variables. When we

assert, for instance, Laplace's equation

we are not implying a choice among an infinite set of laws

in any one of which x, for instance, may have a value chosen

from a continuous set of possibilities. We assert that for all

values of x, y> z corresponding to points outside matter this

differential equation is satisfied by the potential. In the

language of mathematical logic this equation should be written

as follows.

WhateverP, x y y>z, Vmay be, if V is the gravitation potential

at P, a point outside matter with co-ordinates (x,y y z), then

dx* dy* 3*a
~

*

When a symbol is given all its possible values, and the

differential equation is asserted for all of them, the symbol is

only an apparent variable. There is no objection to apparent
variables being capable of continuous variation

;
what matters

is the form of the law, not the actual values of the variables

in particular verifications. Similarly Poisson's equation at

points inside matter could be written as follows.

Whatever P, x,y, z,p, V may be, if V is the gravitation

potential and p the density at P, a point with co-ordinates

(x,y, #), there is a constant/such that

,

dx*
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There is no difficulty, similarly, about the fact that density
and mass may appear in our equations and are apparently

capable of continuous variation
;
for we assert the laws for all

their values, and they are only apparent variables.

4*7. The question of the probability to be attached to a quan-
titative inference can now be dealt with. If p is the most

probable law on the data at any stage, and q an additional

experimental fact, we have

P(p\q.h) P(q\p.h) P(p\h)
p(~p~\q.h) p(q \~p.hyp\~p\~hy

By the hypothesis we have just made about the prior pro-
babilities of laws, P (p | h)/P (~p\h) is not very small. If q
be implied by jt>,

we have P (q \ p . h)
=

i, while if the con-

tradictory of p gives no particular inference about the truth

of q, P (q |

~ p . h) may be very small, especially if q involves

accurate measurement. Hence, even ifp has not a very large

probability already, a single verification of a consequence
not predicted by its contrary may make

P(p\q.h)IP(~p\q.h)

enormous, and therefore the posterior probability of p is

nearly i . In such circumstances the probability of a further

inference q2 from the law is practically that of the law itself,

since the second tferm in the equation

+P(~p\q.h)P(qz \~p.q.h)
is the product of two small factors. In such inference, then,

there is no advantage to be gained by proceeding directly

from the data to the further inference rather than by way of

the general law, as has sometimes been suggested.
It will be noticed that the argument in the last paragraph

depends on the smallness of P (q \ ~p . h). If, however, ~p
involves a moderately probable law which also leads to q as

a consequence, this probability will not be small, and the

jsi 4
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probability ofp after the verification will stand to that of this

alternative law in almost the same ratio as before. A new
crucial test will be required to decide the issue between them.

If we have to decide between different simple laws, the

prior probabilities of which are in any case moderate, the

high posterior probability of a law arises from its verification.

If a law/>! implies that the measure of a length will be between

15*7 and 15-8 cm., and this is found to be true, then there is

no posterior probability for a law that said it would be

45*0 cm. and very little for one that said that it might be any-

thing from zero to a metre. So long as two laws are not

widely separated in the order of simplicity, the decision be-

tween them rests on the quantitative tests and not on the

prior probability.

But when the laws are widely separated in the order of in-

creasing complexity the prior probability is all-important,

even when the known facts would fit either. An important
case that has arisen in practice is that of small variations in

the numerical constants in fundamental laws. Suppose that

a law contains a numerical constant 2, and that we propose to

alter this constant to z-nnrkirw Then in accordance with our

principle that a law must be cleared of fractions before it is

placed in the order of descending probability, this law will

now have to be treated as if it contained numerical coefficients

running into millions, and its position in the series will be

millions, probably billions, of places later than before. Its

prior probability is accordingly insignificant. In fact a small

change in a numerical coefficient is not a trivial matter; from

the point of view of the prior probability of the law it is the

most drastic change that can be made. As an example, we

may consider the inverse square law of force in electrostatics,

in which the index has been shown experimentally to be 2

within yrthnf. Then the only law within the admissible range

that has an appreciable prior probability is the exact inverse

square one, and it is unnecessary to consider any others.

Similarly, we could discard at sight the suggestion that the
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perihelion of Mercury could be explained if the attraction of

the sun varied inversely as the 2-000,000,016 power of the

distance instead of as the exact inverse square. The exiguous

prior probability of such a law puts it beyond consideration,

apart from the inconsistency with the observed motion of

the moon's perigee that led to its abandonment. In fact the

law established with a high probability by experience is not

an approximation to the simple law, but the exact simple law

itself. Consequently extrapolation over an indefinitely wide

range can be carried out with the full probability of the law.

This is the justification of the inferences concerning con-

ditions at the centre of the earth or millions of years ago
that form so large a part of geophysics and cosmogony.
The rapidity with which an exact quantitative law can be

established depends, then, first on its being sufficiently simple
to have a moderate prior probability, and second, on its

power to make precise predictions that can be tested. Subject
to these two conditions a theory of quantitative inference

can be constructed that will fully explain the confidence that

physicists show in their predictions.

4-2



CHAPTER V

ERRORS

A snapper-up of unconsidered trifles.

SHAKESPEARE, A Winter's Tale

5*1. We saw that when the physicist found that the dis-

placement of his solid down the inclined plane varied nearly
as the square of the time from the start he would adopt the

exact square law as a statement of the facts, in spite of the

existence of more complicated laws that would fit the ob-

servations exactly; and we have shown how this procedure
can be justified on the basis of the low prior probability of

complicated laws, which renders them unreliable for the

purpose of inference. Nevertheless he might not allow the

matter to end there. He might seek for explanations of the

departures of the observed values from those calculated from

the law. In some sense the square law is true; but the

quantities that satisfy it are not quite the data of observation.

The physicist would say that it was impossible to measure

the time absolutely accurately, because the watch could not

be read to less than a fifth of a second ;
there was also some

possibility of inaccuracy in measuring the position of a

moving object; the watch and the position of the solid were

not observed at precisely the same instant, since some time

would elapse in looking from one to the other
;
and possibly

the slope of the plane was not exactly uniform. Having re-

duced his observations he would say with confidence that the

acceleration of a body of the actual form rolling down a uni-

formly inclined plane was constant
;
this would be his general

law for the experiment, which he could extend to bodies of

different design and to planes with different slopes. He would

on the other hand recognize that exact verification of the

law would require conditions not realized in the actual
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experiment, and that the departures from the law had some

explanation.
The physicist's attitude to observations is not the naif

realism attributed to him by some philosophers, which would
make every observation a perfect statement of a fact about the

real world. It is essentially a critical realism. There is a

belief that there are true values of the quantities that he sets

out to measure, but it is not believed that the observed values

are anything but an approximation to these true values,

which are in the last resort unknowable. The differences

between the true and observed values are called errors.

In practice, not knowing the true values, we compromise.
When we have a number of observations of one or more

variables, a simple law is found to fit them approximately.
The case of a single measurement carried out several times

may be brought under this head, the law involved being

merely one of constancy with regard to the time. The law

may involve some parameters not known already, and it will

usually be impossible, however these parameters are chosen,

to make the law fit all the observations exactly. But we can

choose them so as to fit the observations as closely as possible,

though it is largely a matter of convention what criterion we

adopt to measure the closeness of the fit. When we have chosen

one such criterion the parameters in the law and the values

of the function are unique. We call these the adopted values.

In general they will differ from the true values, but will be

nearer to them than the observed values. The differences

between the adopted and observed values are called residuals.

The differences between the true and adopted values are the

errors of the adopted values.

In general the procedure may be summed up as follows.

The observed values are found
; they exist because they are

measured, and there is nothing more to be said. A simple

law is found to fit them approximately. This is a statement

of fact. Then by a conventional process we find adopted
values close to the observed values that fit the law exactly.
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So far as the convention is at our disposal the adopted values

have some arbitrariness, but with a given convention they
are unique. The adopted values therefore exist. The existence

of the true values, however, is a postulate, the validity of

which will have to be examined. We notice at present that

the observed values are more fundamental in experience
than the simple law, that the simple law is more fundamental

than the adopted values, and that the whole process of finding
the adopted values could be carried out equally well if there

were no such things as true values.

Provisionally we shall assume that the true values exist,

that the exact simple law refers to certain specifiable condi-

tions, and that the errors arise from the fact that the actual

conditions of the experiment differ to some extent from these

ideal ones. The practical justification for this assumption is

that it is actually found that the more closely these condi-

tions are realized the more accurately the simple law fits the

observations, though it never fits them exactly. The ideal

conditions always reduce to the removal of unconsidered vari-

ables. Thus in the problem of the rolling solid we should con-

struct the plane so as to have as nearly uniform a slope as

possible, and we should substitute electrical recording devices

to record the time and displacement simultaneously instead

of relying on eye observations. The aim is to make the time

the only independent variable, and thereby to remove varia-

tions of the displacement that may be due to variations in

anything but the time. It is here that causality enters: if

when y is kept constant, x =f(t), and if when y varies x

differs from/(J), the changes in x are said to be caused by
the changes in y. This is the practical definition of causality.

In the actual experiment the errors are said to be caused by
the unconsidered disturbing factors.

The most fundamental type of error is inaccuracy of

measurement. Observed values are never capable of taking

all values of a compact set
;
in making a measurement we read

the instrument to the nearest multiple of a certain constant,
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which we call the step of the instrument. Thus in measuring
the position of a mark on a scale we may read to the nearest

hundredth of a centimetre
;
in observing an instant of time

we give it to, say, the nearest fifth of a second.

5*2. The possible observed values in the one case are mul-

tiples of a hundredth of a centimetre, in the other, of a fifth

of a second. The true value is not in general a possible ob-

served value, since the true values of most variable quantities

vary continuously. Hence there is an error of observation

equal to the difference between the true value and the nearest

observable value, which may in an extreme case be half the

step of the instrument. Such an error, for a given true value,

is systematic; that is, it is always the same however often we

repeat the measurement.

5'21. Suppose next that we wish to measure a length by
means of a scale. Take the step of the measuring scale as the

unit of length and suppose that the true length is n + x,

where n is a whole number and x is between ^. The object

is placed on the scale in an arbitrary position, and the posi-

tions of its ends are read. One end is at m 4- y, where m is an

integer and y is between J. Then the other end is at

m -f n -f x -f y. The position of the first end is then read in

any case as m units. That of the other is read as m + n i if

x + y is less than ,
as m -f- n if x + y is between J and

-h ^, and as m -f n + i if x + y is greater than -j- %. xis fixed,

but y is equally likely to have any value from ^ to + J.

Thus the probability of a value of y between yl and y2 is

y2 y . We see that the measured length will be

n i ify < - -
x,

n if x < y < % x,

# -f i if ^ x <y.

If x is positive the first alternative cannot arise, since y
cannot be less than

;
for the second, the range of values
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of y is from \ to \ x, or i x in all; for the third, the

range is x. Hence if x is positive the probability of an ob-

served length equal to n units is i x, and that of one equal
to n + i units is x. Similarly if x is negative the probability
of an observed length equal to n units is i + x, and that of

one of n i units is x. In each case the possible measured

lengths are the two multiples of the step adjacent to the true

length.

5*3. Now consider the case where a large number of in-

dependent contributory causes affect the observed value.

Suppose that the error is given by
= #ll + a2 2 + ... + an n , (i)

where elf e2 > n can aU vary independently. Suppose that

the probability that in any given trial er will lie in a given

range der is Er (er) dcr . Then the probability of a set of values

within ranges dcl9 dc2 ,
... den is

EI (6l) #2 (*2) ...En ( n) <M*2 ...& (2)

We require the probability that shall lie in a range ^ to 2 .

This is

/ = JJJ ... J^ ( l) 2 (e2) ... n (en) ^ ... den , (3 )

where the range of integration is such that all values of each

variable are permitted, subject to

l< ^1*1 + ... + fln*n< & (4)

Now Heaviside's unit function H (), which is equal to o for

negative and i for positive, is given by*

Also fftf
-

fj
- # (f

-
&) = i if & < f < &, (6)

and otherwise = o. Then
T fC-t-i foo foo PK

I= ^\ - V <
e""ti -^ i (ei)^ (z) -

27Tt J c_ l0o J oo J co K

...En ( n)dKd l ... den , (7)

*
Jeffreys, Operational Methods in Mathematical Physics, 1927.
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where the *s may now range over all real values independently.
Now put

r)d r
= Qr (ar K). (8)

-00

Then

c _ t00 K
...Qn (anK)dK. (9)

Now replace & by and 2 by + rf, and put

fi
(/o)

= Dx (^/c) Q2 (a2/c) . . . Qn (a.K). (10)

Then 7, the probability that lies in a given range dg, becomes

P(f)d, where

Now
(co foo

r()= **Er (fr)der =\
J -00 J -

00 Qk= i + S
F|

jrfc , (12)
A;-l *

f
where ^ = e/ r (er) rf f . (13)

J -00

Now form log ir (0), so that
00

flk

0)= 2 p/)rt . (14)

Then logQ(/c)= L X ?prt
= % Pk , (15)

and P(a = -i-
<

exP -
icf + P, ^. (16)

So far nothing has been assumed about the quantities sr1c

except that Er (er) decreases for large absolute values of cr

with sufficient rapidity to make the various integrals and

series converge. We can, however, make all the % zero by a
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change of variable. For if this relation is not already satis-

fied we take a new <r/ equal to er srl ,
and then

Er ( f) (er
- *rl) dtr

= o, (17)rJ -c

since Er ( r) dcr
=

i, (18)

it being certain that r lies between oo. If then we use e/

instead of r the new srl is zero. Then pn and P1 are o. Also

we define o>, the mean square or standard value of e/, by

= f

J
(19)

We need no longer write accents, all component errors

being supposed transformed in this way. We see that ov
2

is

always positive; by convention we give o> the positive sign.

Then
2

; (20)
r-l

The integral is in a form suitable for evaluation by the method

of steepest descents. If we omit the terms with K > 3, there

is a saddle point where

(22)

and the path of steepest descent is parallel to the imaginary

axis, since P2 is real and positive. Hence the integral reduces

t0
P (|)

=
(27TP,)-* exp (- |P/P2). (23)

Appreciable contributions to the integral arise only for values

of K - /P2 of order (2/P2)* at most.

In most ordinary cases Er (er)
= o or is insignificant for

values of cr much greater than o> . Then srk is of order crr
k

;

so is prk ;
and

P
fc
= S *r*/>rfc

= O
{
S

(a^,)*} , (24)
r-l tr-1 J
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and is of order nakak if the arar are all comparable. Within
the range where exp (~ K + fP2*

2
)

is appreciable, then,

(25)

and if is not large compared with P$ this is

O (naW) (P2)-i* = O (na
k
<r
k
)/(naW)-l

k = O (w
1
-**). (26)

If then H is large, PkK
k is small throughout the neighbourhood

of the saddle point for all values of k > 2 ;
and then (23) is a close

approximation to the true value of P (). Further, it makes

P P (!)<#= i, (27)
J -a.

nearly, where a is a moderate multiple of (zP$ ;
and therefore

values of outside the range a have an insignificant

probability*.

We notice that the proof depends for its validity on the

condition that when k > 3, Pk is small compared with (P2)**> or

n / n \ Jfc

S ar*<rr
*

is small compared with
(
S flr

2
o>

2
)

. (28)
r=l \r-l /

If all the arar are equal or comparable, and n is large, this is

true. But if one of them, for r = m say, is so large as to con-

tribute the greater portion of P2 ,
then P2 is of order am

2am
2
,

Pk is nearly am
k
<T^

k
y
and Pk is of the same order as (P2)**

In such a case the normal law breaks down; it is indeed

* This discussion is taken mainly from Whittaker and Robinson's

Calculus of Observations, which gives references to earlier writers. It has

been modified by the introduction of Heaviside's unit function and the

method of steepest descents. The consideration (27) is part of the proof.
Our argument shows that in the specified conditions the terms in Pk for

k^ 3 do not matter on the path through the saddle point considered, by
the usual considerations involved in the method. But if was large com-

pared with (zP*r our equation (26) would not hold. Then, however, we
can use the fact that the total probability of all values of is i

,
and (27)

shows that nearly all of it arises from such values as do make the approxima-
tion valid; when the probability is appreciable our result is correct, and
when it is inappreciable our result is still correct.
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obvious that then amP(am m) is nearly Em (cm). But when
the contributions to P2 arise in comparable amounts from a

large number of the component errors the condition is true,

and the normal law holds.

Suppose that a large number of the er are of comparable

importance, that is, that the probable range of variation of

ar r is of the same order of magnitude for all of them, and that

the others give smaller contributions to . Then it is shown

that the probability that lies in a range d is P () dg y
where

9

VTT

and A is a constant called the modulw of precision. This is

called the normal law of errors. The probability of an error

between o and is

fp(f)
= terf*f. (30)

Jo

When kg is equal to 0-477, erf kg = |. The corresponding

value of |, equal to 0-477^, is called the probable error] it has

the property that the error is as likely to fall short of it as to

exceed it. The mean square or standard error is defined by

2
= A= S arV. (31)n r = l

The probable error is 0-674 times the standard error.

5-31. There has been much discussion about the validity of

the normal law of error. It on the whole follows the same

lines as that associated with Laplace's theory of sampling:

just as it is doubted whether there is any reason to believe

Laplace's assumption that all compositions of the original

class are equally probable, so it is doubted whether there is

any reason to believe that errors are actually distributed

according to the normal law. The solution in both cases

seems to be much the same. If certain conditions are satisfied

the normal law is definitely right ;
in other cases it is definitely
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untrue. We have already had two simple cases where it is

untrue. When an observation is made to the nearest multiple
3f the step of the instrument the error is the difference between

the true value and that multiple, and is always the same.

When a length or an interval of time is measured as the

difference between two measures each made to the nearest

multiple of the step, the possible observed values are the two

nearest multiples of the step, and no others. In each case

the normal law is simply inapplicable. But when the error

arises as the resultant of a large number of independent errors

of comparable importance the normal law is right. Two such

cases are common.

5-32. Suppose that we make several observations of the

same kind, of number n, and that we take the mean. Then
each observation is liable to an error of the same magnitude,
and the standard value of each is the same. The mean is

i/n times the sum of the individual errors, so that each ar in

the foregoing discussion is i/n y
and

= -
8
Sar . (I)^ '

The conditions for the validity of the normal law hold if n is

large. If for instance we consider the measure of a length,

when the step is unity, and the true value is an integer + xr ,

where xr is positive, Er (er)
= o unless er is either xr or

i xr . The probability that er is xr is i xr ;
the pro-

rb

bability that r is i xr is xr . Then Er (er) der
= o unless

a

the range a to b includes either xr or i #r ;
if it does

include xr the integral is i xr ;
if it includes i xr the

integral is #r ,
however short the range may be*.

Then

=
(i
- Xr) Xr

* + Xr (i
- #r)

2 = *r (I
-

*r)- (2)

*
Stieltjes integrals are understood. Cf . Hobson, Theory of Functions

if a Real Variable, 1, 507.
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When n is large and the xr are regularly distributed from
o to i,

fl

= n x (i x) dx, nearly,
Jo

= K (3)

provided n is large enough for the theory of sampling to be

applicable. Then

"%-"*. (4)

Strictly speaking the possible values of the mean are all

multiples of the step divided by w, but this gives no trouble

provided that we consider only the probabilities of errors

within ranges greater than i/n.

This theory is not applicable if the same length is measured

several times, for then ar is always the same and a function

of x, ranging, by (2), from o for x = o or i to | for x = J.

The condition that the errors must be independent is then

not satisfied. We notice that in this case

f E(c)dc=-(i-x)x + x(i-x) = o. (5)
J -00

5-33. Another case where the normal law appears to hold is

one where considerable attention has been given to possible

sources of error and all the most serious ones have been

traced, as in many astronomical observations. The remaining
ones then probably contain several just below the limit of

what can be detected individually, and the normal law will

hold approximately.

5*34. The normal law is true unless there are one or a few

sources of error of sufficient importance to dominate all the

rest. But if there is a single main source of error we should
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still consider its probable distribution. It may be one of the

types already considered, arising from the step of the in-

strument. If so its properties may be considered known. It

may be the result of a definite mistake on the part of the

observer, as when an astronomer observing a meridian transit

makes a miscount of a second. Criteria for detecting such

mistakes are needed
;
at present we notice only that they are

capable of giving errors of certain discrete values, which are

multiples of the step. Other factors not allowed for may have

similar properties ;
that is, they affect only a small fraction of

the observations, but when they do arise they give errors

larger than are usual. Such errors may be capable of only
one sign; thus the astronomer may occasionally count too

few seconds, but never too many.
There may on the other hand be a single source of error

capable of giving many different values. There may for in-

stance be an unknown periodic disturbance. The practical

solution here is that the periodic character of the residuals is

noticed, and its amount can be determined by harmonic

analysis and allowed for
;
its cause then becomes a matter for

independent inquiry. Such a case arose in the discovery by
Chandler of the i4-monthly and annual terms in the variation

of latitude. But such individual sources of error may have

many different distributions of probability; and in practice

the issue is very lil^e that of assessing the distribution of prior

probability in the theory of sampling. We start from a state

of ignorance such that all observed values of the variable are

equally probable. By experience we build up knowledge that

the observed values are concentrated in a short range about

the value given by a simple law, and by studying all our

previous knowledge about modes of distribution of errors

we could, given sufficient trouble, assess the probabilities of

given errors. But the effort would be more trouble than it is

worth. In practice it is better to take a sufficiently large

number of observations to make the posterior probability

practically independent of the prior probability.
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5*4. In practice we are not much interested in the errors as

such, except in so far as they may show a systematic character

that may repay special investigation. What we want is the

true value, and if we cannot find it, we want to choose an

adopted value as near as possible to it. That is, given the

observed values, we wish to assess the probabilities that the

true values may lie in various ranges. The problem therefore

becomes one of inverse probability, and the prior probabilities

of different true values must be taken into account.

541. Consider first the case of a single reading made to the

nearest multiple of the step ;
the observed value is n, where

the step is the unit. The true value is n + x. Then the prior

probability that x may lie within a range is proportional to

the length of the range ;
if P (x) dx is the prior probability

that x lies within a range dx, P (x) is a constant. The pro-

bability of getting the reading n is i when x is between |
and zero when x is outside that range, for then another in-

tegral value would be read. Hence the posterior probability

that x lies within a range dx is

P (x) dx . i j , , -= dx when $<#<,
P(x)dx

J -00

P(x)dx.o , i\J - = o when x < f .

P(x)dx

Thus after the observation, or any number of such observa-

tions, the posterior probability of x is uniformly distributed

between .

5'42. Consider next a length or a time interval determined

by difference. The observed values are / equal to n and m

equal to n + i. The true value is n + x, and P (x) is constant.

For a given x the probability of a reading n is i
|
x

\
when

x is between i and otherwise zero; the probability of a
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reading n + i is i
|
i #

|
when i x is between i

and otherwise zero. If then x was negative the readings n -f- i

would not arise
;
if x was greater than i the readings n would

not arise. For o < x < i , the probability of / readings equal
to n and m equal to n + i is l+mC

l (i x)
1 xm . The posterior

probability that x lies in a range dx is therefore o for x < o

or x > i, and when o < x < i is

jP-M dx l+mCi (*
~

*)' x - ( l
~~

*)' *
m dx

f
P (x) dx

l+mC l (i
-

x)
1 xm [ (i

-
A?)

1 xm dx
Jo Jo

(i -#)'#" , (/-j-m+i)' x
_ w , /x=

^-77-, ; \
^ =

~7i r-2 (* XY *m dx. (i)B(l+ \,m+ i) /!m! v y v J

The coefficient of dx is a maximum when

m f x

*-rnS' (2)

so that the mean of the observations is the most probable
value. Calling this value # , we find easily that when / and

m are large the posterior probability is proportional to

Thus if we take XQ as the adopted value, the probabilities of

different true values are distributed about XQ according to the

normal law, with a .standard deviation aa given by

We notice the advantage of this method over direct reading.
When a single quantity has to be measured as the nearest

multiple of the step, the same observation may be made an

indefinite number of times without in the least affecting the

precision of the adopted value. But when it is determined by
difference and the measure is repeated a large number of

times, the standard difference between the adopted and true

values may be reduced indefinitely.

jsi 5
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5'43. When the normal law of error applies, we proceed as

follows. The true value being now taken as x, and the ob-

served value as x + ,
then the probability of an observed

value in a range di; is ,_ e~h^ dg. The probability of a set of
Vrr

errors in ranges about gl9 2 Zn *s then

1dt2 ...dtn . (i)

But actually both x and h are initially unknown, and we are

trying to find x from the observed values. Calling these

x^Xfr ... xn > we have

& = #!
-

#, ... n - *n - #, (2)

d^ = <&!, ...... rf n - <&n . (3)

If the prior probability that x and h lie simultaneously in

ranges dx
y
dh is P (#, h) dxdh, the posterior probability that

they lie in these ranges is

I"
J -00 JO

the factor 7r"~^
n
dx dx2 ... dxn being the same for all values of

x and h.

As usual the posterior probability depends on the prior

probability. In most cases the prior probability of x is nearly

uniformly distributed, at any rate over a range several times

that covered by the observations. We are initially prepared
for values of x over a wide range, and the purpose of making
observations at all is to permit a considerable reduction of

this range. The position is different with regard to h. Initially

we may have no special views about the probability of one

value of h rather than another, but we do at least know that

negative values are excluded, since they would imply negative

probabilities. Again, x is not usually in fact a number; it is

usually a length or an interval of time, and h is a reciprocal
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of whatever kind of magnitude x is, while the standard error

cr is the same kind of quantity as oc. There seems to be no

special reason for measuring the precision in terms of h
rather than o-, and their product is constant, so that

d log h + d log a = o t (5)

If then P (x, h) dh is proportional to dh/h or
rfcr/or,

an ambiguity
is removed. It means that the probability of a value of a or A

within a definite range is proportional to the increase of its

logarithm ;
if h^jh2

= A3/A4 , h is as likely to lie between h and
h2 as between h3 and A4 . The probability of a value of h

within any range is then independent of any scale of measure-

ment
;
it is distributed in the same way among different values

whatever our units. If any other function of h was chosen

we should be assigning a definite prior probability to a value

of h less than a certain quantity, and this would put a particular

value of a physical quantity in a privileged position a priori.

In many cases, then, it seems reasonable to take P(x,h)
proportional to i/h.

This is not, however, quite a complete statement, because

f

it makes P(x, h) dh diverge at both limits. To make this
J o

integral equal to i we should therefore have to include a zero

factor unless very small and very large values of h are ex-

cluded. This does appear to be the case. We choose the length
of our scale so that all the measures will be included within it

easily ;
that is, all the important values of h are large compared

with the reciprocal of the length of the scale. Again, if the

scatter of the observations is comparable with the step of the

scale, the finiteness of the step is a dominant source of error

and the normal law does not apply at all. We are therefore

restricted to a range of values of h that make a large compared
with the step of the scale and small compared with the length
of the scale. The range of admissible values of log h is now

large but finite, and within this range we may suppose their

prior probabilities distributed uniformly except near the ends.

5-2
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We now introduce the mean value, defined by

nx = #! + #2 + ... -f xn , (6)

and write

*!-* = (*!- *
) + (x

-
#), (7)

and so on
;
then

=
(*i
-

*o)
2 + (*2

~
*o)

2 + - + (*
-

*o)
a + n (x

- *
)
2

.

(8)

The quantities ^ XQ and so on are the residuals, / say,

and A?O ? is the error of the mean value. Then

exp {- fiA* (*
-

*)*} dx = *, (9)

and if we denote the posterior probability of values of x and

h in the range dxdh by / (#, h) dxdh we have

.

A"-2
exp [- A2 S f2

]
dk

JO

Put SP = a'2 (n)

so that CT' is the standard residual. We have

o

A- exp (- aA^)dh^H {| (n
-

3)}, (12)

and

the large values of h making an inappreciable contribution in

any case, and the small ones ifn>i. I (x, h) does not break

up into two factors, one a function of x and the other of h,

so that it would not be correct to speak, on the data, of the

probabilities of given values of x x and h separately.
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The probability of a value of * in the range dx, irrespective
of h, is

V; n a (
-

3)}

2_
V* n {f(

-
3)} {(7

'2 + (x

so that the posterior probability of x is not distributed

according to the normal law.

But if n is large, and x x small compared with a',

{a'* + (x- *)*}* = </ exp \n (15)

nearly, and the probability of a given value of x is propor-
tional to exp {- n (x

-
Xo)

2
/2a'

2
}. The mean value is in any

case the most probable ; in this case the probabilities of the

true values are distributed about it according to the normal

law with a standard deviation cr'/Vn. Subject to the same
condition we can put (x # )

2
equal to its standard value

a/2

/n in /(#,/*); then

/ (x, h) oc hn~i exp

= A*-i exp {- (n + i) AV2
} . (16)

This is now independent of x
y
and may be taken to give the

distribution of probability of A. It is a maximum when

AV2 --""" 1

, (17)
2 n + i' v n

so that the most probable value of h is nearly i/vW. Near
this value of A, hg say, the probabilities are distributed nearly

according to the law

/ (x, h) oc exp {- 2 (n + i) a
2
(h
- A )

2
}. (18)

The standard deviation of h is (n + i)"*/^'.
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But we must remember that it is only in a rough sense that

we can speak of the posterior probabilities of values of x and

h separately even when n is large. If we put (x #
)
2
equal

to o, corresponding to the most probable value of x XQ ,

instead of to its standard value, the resulting probabilities of

h would be somewhat differently distributed. The most

probable value of h and its standard deviation are strictly

functions of x x .

55. The most commonly quoted proof of the normal law of

error is that of Gauss, which appears to show that if the mean
is the most probable value the errors must follow the normal

law. A case has arisen above where the mean is the most

probable value and the errors do not follow the normal law.

It is therefore desirable to reconsider Gauss's argument and

see where the difference has entered. He proceeds by as-

suming that the true value is x, and that the probability of an

observation within a range dx: about x is
<f> (x1 x) dx .

Then the probability of a set in the ranges dxly dx2 ,
... dxn is

x) (f> (x2 x) ...
<f> (xn x) dxtdx2 ... dxn . (i)

Given the observed values, then, the probability of a value

of x is proportional to

<f> (x1 x) (f> (x2 x) ...
</> (xn x) dx, (z)

if the prior probability of x is uniformly distributed. This is

a maximum for variations in x if

*n-*) = o. (3)

But the postulate that the mean value is the most probable

says that this condition must be equivalent to

(x1
-

x) 4- (#2 -x) + ... + (xn
-

x)
= o, (4)
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for all values of the differences, and therefore

2^g #(*i-*) ^lg<(*2-*) ^lg<(*n-*)
x1 x x2 x

'"
xn x '

= 2h\ (6)

say, since each ratio is the same and therefore cannot vary
with x. Integrating we find that

<f> (xl
-

*) oc exp {- h*
(Xl

-
x)}*, (7)

which is the normal law of error.

This mistake is in the equation (i), which supposes that

the probability of getting all the observations xl9 x2 , ... xn is

the product of the probabilities of each observation separately.
It supposes, that is, that when the observations xlt x2 ,

... xn^
have been made the probability that xn will have a certain

value is just what it was at the start. It therefore constitutes

another contradiction of the principle that it is possible to

learn from experience. If the early observations are found

to have a small scatter, the next will be expected to be near

them; if they have a large scatter we shall correspondingly

expect the next to deviate considerably from the mean of

those already made. If they all repeat one of two constant

values, we shall expect the next to have one of those values.

Gauss's proof is in fact valid if we know beforehand all about

the distribution of the probability of error
;
it is inapplicable

when it is from the observations themselves that we are

trying to find this distribution.

When we say that "the normal law holds" we mean that

there are true values of x and h such that the errors satisfy

the normal law. In the usual practical case the possible

values of x and h are scattered over a wide range, the normal

law holding for each pair of values. If we try to assess the

total prior probability of an observed value x^ for a given x,

by adding up the contributions for all values of /r, the
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result is not of the normal form ;
if P (x, h) is proportional

to i/A, the prior probability of a given f is proportional to

which is not proportional to 0-V*1
for any value of hQ .

Similarly the posterior probabilities are not of the normal

form, even when the normal law holds. It is the component

probability from each pair of values of x and h that is referred

to when we speak of the normal law of error; any attempt to

compound probabilities destroys the normal form.

5'6. In addition to errors with probabilities following the

normal law and those arising from the step of the instrument

many other types exist. The probability of a given distribu-

tion of error, before the observations are taken, is in each case

quite definite, but involves taking into account the whole of

our previous knowledge about what distributions of error

have occurred in the past. Its calculation would be over-

whelmingly laborious, and the effect on the result would in

most practical cases not be worth while. If there is no strong
and obvious reason to expect any particular law of error in a

given case, there is no better plan than to take a large number
of observations and draw a smooth curve to represent the

frequency of their departures from some convenient standard

value. But the question arises, what in this case is the most

probable value? The answer will depend on the circum-

stances. If the observations show a strong tendency to

collect about two definite values, that fact is evidence that the

errors arise from some disturbing factor with a finite step,

and we cannot do better than to take the arithmetic mean.

They may be approximately symmetrically distributed about

the mean value
;
in that case also, if there is no previous reason

to expect the errors to be predominantly of one sign, we may
take the mean value as the most probable. But it may turn

out that their distribution is noticeably asymmetrical. The
observations on one side of the mean may be few, but with
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large deviations, while those on the other side are many with

small deviations. In that case the placing of the most prob-
able value with respect to the mean requires either assessment

of the prior probability or special examination of the actual

causes of the errors. If neither is carried out an uncertainty
about the position of the most probable value necessarily

remains. Three alternatives are usually considered in such a

case: the arithmetic mean, the mode, and the median. The
median is defined by the condition that as many observations

exceed it as fall short of it
;
the mode is such that the number

of observed values for a given range is greatest there. In

general with asymmetrical distributions all three are different.

The median would be the most probable if a positive error is

as likely as a negative one, irrespective of their magnitudes ;

the arithmetic mean may be the most probable if the magni-
tudes of the errors matter. Both alternatives may arise in

different cases. The mode is the most probable if there is

some reason to expect that the errors arise from special

causes not present at all in the majority of the observations.

The use of the mean as the adopted value has the advantage
that it makes the standard deviation a minimum. The median

has the advantage that we can divide the observed values, in

order of magnitude, into four classes, each containing as

nearly as possible the same number of observations. The
median comes at the boundary between the two middle

classes, while the extremes of the two middle classes specify

a range such that a given observation is as likely to lie within

it as outside it. In this sense such a classification determines

a probable error; or rather two probable errors, one for

positive and the other for negative errors. In no case will the

probable error of a single observation, that of the adopted

value, nor the mean square error, follow the same quanti-

tative rules as have been determined for cases where the

normal law holds.

If the only purpose of the observations is to determine a

single quantity as accurately as possible, and the errors turn
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out to be asymmetrically distributed, there seems to be

nothing to do but to consider which of the conditions for the

arithmetic mean, the median, and the mode is the most

likely to be applicable in the given case, and to choose the

adopted value accordingly. A method often considered in

such a case is to attempt to allow for the terms in P3 ,
P4 ...

and so on in 5*3 (21). Thus

-r fC+lOO / 00 ..fc\

=
h. exP (- ** + * P**2 + S P

*Fi)
dK

2m J c _ l0o \ fc = 3 R\J

= P (), subject merely to a convergency condition,

so that we can write

The expansion can then be carried out
;
the terms are known

functions of with adjustable coefficients involving the Pk .

By an extension of the method used for finding the posterior

probabilities of values of x and h when the normal law holds,

we can now use the distribution of the observations to find

both P2 and the higher Pk as closely as possible, and still to

estimate the distribution of the posterior probability among
various values of x. But it seems to me that such a procedure
can lead nowhere. The normal law is valid as it stands when
there are a large number of component errors of comparable

magnitude. If it requires modification, it is because there

are one or a few sources of error of predominating import-

ance, and the law of error is determined mainly by these. If

the extended law is applied it will only lead back to the law of

the dominant component error, whatever that may be; and

if the observations cannot determine that directly no modi-

fication of the normal law will do so, for the condition for a

few terms of the series to give an approximation to the whole
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is not satisfied, all the terms in fact being of the same order

of magnitude.

5-7. Another warning is needed with regard to the quantities

srl . If these do not vanish, the error that we have shown in

certain cases to follow the normal law does not arise directly

from the actual component errors er ,
but from their differ-

ences from their associated srl . In fact
'

is not S ar er ,
but

f
' = S ar r

' = I>ar r -It ar sn = - S ar srl .

n
The observed value is x + ,

that is, x + S ar srl + ', where
r-l

'

follows the normal law. Then however many observations

we may use to determine our mean, the quantity that has the

mean for its most probable value is not x, the true value, but
n

x + S ar srl . We can never find the true value from this with-
r - 1 n

out some knowledge of the sum S ar srl9 which affects every
r-l

observation equally. It is usual to call such a constant error

the systematic error, while the deviations
'

that do satisfy

the normal law are called accidental errors.

If now the probability of error is asymmetrically dis-

tributed, that means that errors of one sign are likely to be

more frequent or larger than those with the other sign; in

either case a systematic error is to be expected. In any case,

that is, where the distribution is asymmetrical, the existence

of a systematic error may be inferred. But it may exist also

where the distribution is symmetrical. In either case the

observations give us no means of evaluating it; this can be

done only by way of other considerations.

At first glance the problem of systematic error seems to

stultify our whole procedure; for it means that, however

many observations we may take, the difference between the

adopted value and the true value remains unknown. Yet we
still have our assurance that the observed values nearly satis-

fied the physical law under test
;
the adopted value cannot be
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far wrong. At the worst we could make it a convention to take

the mean as the adopted value in the case of a quantity known
to be nearly constant

;
or we could always find the parameters

in a law by the method of least squares. The true value in any
case does not differ much from the adopted value ;

the question
at issue is how much it is likely to differ. This reduces to the task

of evaluating the systematic error, which is in any case small,

of the order, for instance, of the difference between the mean
and the median. We may attempt to do this from previous

knowledge, by measuring other variables directly and allowing
for them ;

or we may determine the quantity under considera-

tion by means of other laws that involve it and may give

different systematic errors, and then compare the results.

The differences may indicate the nature and extent of the

systematic errors and suggest means of tracing them to their

causes. In fact systematic errors are, and always will be, the

curse of the present and the hope of the future.

5*71. We may be interested in the arithmetic mean for

other reasons ; for instance, it is wanted directly in the evalua-

tion of an integral. Suppose that the true value is #, and the

error of an observation g. Let the probability of an error

between g and g + dg be E (g) dg. We take

I" E(g)dg=i; P
J -co J -c

so that ()# = * + *. (2)
J -00

Now consider a set of observations r ,
n in number, and their

mean T

& = Sr- (3)

Then the probability that the mean would be in a range </ is

Aexpt-A'tfo-*) 2}^, (4)
VTT
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provided the conditions of 5-3 are applicable. The standard

error is the same for each observation, since all are made in

the same conditions, and they are independent. Hence, if

or is the standard error of the mean,

n
j a2

r *=i n n

The conditions required hold provided that n is large. The

probabilities of the mean value are therefore distributed

about x 4- s according to the normal law even if those of the

original observations are not. Further,

Of the terms on the right, the second is zero. The first can

be found from the observations and denoted by mr' 2
, where

a' is the standard deviation. The last may be zero, but we

may suppose, seeing that the standard value of ( j)
2

is a2

and that of
( s)

2
is o-

2
/w, that the ratio of the corresponding

sums is n : i. This is an approximation, which will sometimes

exceed and sometimes fall short of the truth. Then we can take

= na\ (7)

?-^rS"> ff
2 =^V W

This approximation is subject to the same sort of uncer-

tainty as arose in dealing with the determination of the

standard error when the normal law is satisfied. We have

obtained in this way an estimate of the standard error of the

arithmetic mean when the actual law of error is not the

normal one.

5-72. It often happens that the quantity sought can be found

from several different types of data. The mean distance of

the sun, for instance, may be found from observations of
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the transit of Venus, observations of Mars or an asteroid near

opposition, from the moon's parallactic inequality, or from

the aberration of light. Suppose that the true value is #, and

that we have several methods of measurement. In the rth

method the probability, given x, of an error between r and

r + dgr is E( r) d r ,
for a single observation. Denote an

individual observation in the rth series by grff ,
and suppose

that there are nr such observations. Consider the sum

= S S ar{rs
= 2 nrar sr + S *r ( r3

- sr)
r 8 r r 8

=
> + ', (i)

say, where the ar are constants. Then in certain conditions

the probability that will lie in a given range d is P () dg>

where
/_

-^\ (2)

and 2/?
2a2 - i

;
cr

2 = S 2 ^zr
2
o-r

2 = S n rar*crr
2

. (3)
r s r

When all the observations are equal we want to have the

same value. Hence we take

SSar
= S r flr =i. (4)

r s r

Otherwise the ar are at our disposal.

Suppose that we want to make <r
2 as small as possible. We

introduce a multiplier A and say that

= Xnr (v*ar
-

A) dar
= o, (5)

for all dar ,
if A is chosen suitably. Hence

and finally a, - ,-'/L \ (7)
/ r ar

a* = X nrA
2
/ar

2 = A = I /S -\. (8)
r
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But the orr are the standard errors of x sr as found from the

separate methods; if o>' is the observed standard deviation

in each and <r
r<)
the standard error of the mean value we have

nearly 2

If then we determine the standard error of each mean value

as in 571 we have

-

The conditions for the validity of the normal law of error are

that the individual errors shall be independent, which they

are; and that the largest contributions to a2 from the in-

dividual errors shall arise in comparable amounts from a

large number of them and not from only a few. The latter

condition is satisfied by the terms in a2
arising from a single

series of observations, and a fortiori from those from all the

series together. The probabilities of errors in weighted means

derived from several series of observations therefore satisfy

the normal law
;
and the standard error can be computed from

the means and standard errors of the separate series by the

same methods as are applicable if the probabilities of error

in each series are distributed according to the normal law.

The practice of weighting the means from the separate
series according to the inverse squares of their standard errors

is open to some objection, because it neglects the question of

systematic error. The quantity that follows the normal law is

not the actual error of the final mean, but this error less by

()

To make the error of the final mean small we want not only
to make its standard accidental error as small as possible, but

also to reduce as far as we can its systematic error. To choose

the ar as in (7) achieves the first object; but there is little
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ground for supposing that the same choice is suitable for the

second object. In particular the ar ,
as we have chosen them,

depend on the number of observations in the series; the

systematic errors do not. To put the matter in another way,
the means derived from the separate series in general differ.

The differences arise partly from the fact that the different

methods give different systematic errors, and partly from
accidental errors. The latter can be reduced indefinitely by
taking enough observations, but no number of observations

will reduce the systematic errors. If the means differ by
amounts large compared with their standard errors, it is fair

to infer that the differences arise from systematic error, and

the weights assigned are illusory. If we have previous reason

to expect systematic error from any method, its amount may
be inferred from the differences between the mean given by
that method and those given by the others. If all the methods

are initially equally likely to have systematic errors of a given

amount, we should take a simple unweighted mean, at any
rate until the causes of the outstanding discrepancies have

been investigated.

5'8. There is a common type of error, which arises from the

co-operation of a large number of causes of comparable im-

portance, together with one or a few that affect only a small

fraction of the observations, but produce large errors when

they do occur. One such example has been mentioned already,

when an astronomer observing a transit makes a miscount of

a second. Such a cause implies an incompleteness in the

normal law of error and therefore casts doubt on the adoption
of the arithmetic mean as the most probable value. We require
a criterion for recognizing observations so affected when they
occur. An absolute criterion is impossible, for a deviation of

any magnitude is theoretically possible, even when the normal

law applies and the standard error is known already. But

errors greater than a moderate multiple of the standard error

are so rare that we may say that when they arise they probably
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come from some unusual cause. If so, we shall be justified in

rejecting them and determining the adopted value and the

standard error of the adopted value from the others. This

course will sometimes be mistaken, because they may really

arise as the large errors to be expected occasionally from the

normal law itself; and if the normal law is applicable to the

whole of the observations the most probable value is the

arithmetic mean, and the mean after rejecting an observation

is not the most probable value.

In the circumstances we are considering the error is of

the form f1 + 2 , where x follows the normal law. The pro-

bability of value of 2 follows the law

82 (2) ^2 = when 2
= o lies within rf|2 , (i)

TOO jE2 ( 2) d$2= when a range about 2
= o is excluded, (2)

J -oo Wl

[<m E2 ( 2) 2
2

<z 2
= <72

2 with the same restriction. (3)
J -oo

Then the error 2 arises in only i/m of the cases, but if its

standard value a2 is found from the cases when it can arise it

much exceeds o-j , the standard error of those observations that

do follow the normal law.

In practice m and the form of E2 ( 2)
are initially unknown.

The question is \yhether, from a given set of observations,

we can infer with considerable posterior probability that m is

finite, and that one or more of the observations have been

affected by the error 2 . If so we are justified in rejecting

them. Suppose then that we have n observations, that the

largest residual is f , and that the standard error as computed
from the whole of the observations is a. Then if is a fairly

large multiple of a the probability of getting one observation out

of n in the range d is nearly n (27r)~*o--
1
exp(

2
/2cr

2
)dg if the

normal law and this value of a are correct. Consider now the

probability of an error in this range from some law other than

the normal one. The aggregate of all such laws must be con-

jsi 6
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sidered. It is plain that the chief contribution will come from

those with m of the same order as n
;
for if m was much less

than n we should expect a large fraction of the observations

to be affected, while if m was much greater than n it would be

unlikely that any would. Similarly the chief contribution will

come from the values of <72 of the same order as . For given
m and cr2 the probability of an error in a range dg is of order

dg/4ma2 . The prior probabilities that m and <r2 ^e within the

requisite ranges may be taken to be fractions, but not very
small ones; let us say . Then the prior probability of an

error in the actual range, derived by way of such laws, is of

order 7 or of 7- -?
. The numerical coefficient is ob-

64 ma2 64 nf

viously capable of great variation. The prior probability of

the normal law being of order unity, we can say that the ratio

of the posterior probability that the error 2 has contributed

to to the probability that it has not, is of order

roughly. This gives a workable criterion. If this ratio is

greater than i
,
we may reject the observation

;
if it is less than

i, we should retain it. Otherwise, our observation may be

rejected if .. e^*** is greater than n2 . We have the following

values :

* _^_ ef'/2(r

o- 30!

1 0-03

2 0-12

3 I -00

4 *5

5 1800

The question of rejecting an observation therefore does not

arise unless g/a is over 3 ;
if we have 5 observations we may

reject an observation with /cr greater than 4; if we have 40



ERRORS 83

observations we may reject one with g/a greater than 5 ; but

then the function increases so rapidly that with any practicable
number of observations we should reject those with f/a

greater than 6, and the inaccuracy of the coefficient ^ is a

matter of trivial importance.
A common astronomical practice is to reject automatically

observations with residuals greater than 5 times the probable

error, or 3*4 times the standard error, and to reject those

with residuals greater than 3 times the probable error, or

2o times the standard error, if there is any intrinsic ground
for doubting those particular observations. From the above

considerations it appears that these rules are somewhat too

stringent; 5 times and 3 times the standard error instead of

the probable error would be better.

6-2



CHAPTER VI

PHYSICAL MAGNITUDES'

Multiplication is vexation
;

Division's just as bad
;

The Rule of Three perplexes me,
And Practice drives me mad.

NURSERY RHYME

6*1. The fundamental notion of any quantitative science is

number. In its most elementary form this means the number
of a class, and depends on the notion of the cardinal com-

parison of classes. Two classes of objects are said to be similar

if their members can be arranged in pairs, one from each class,

so that to every member of the one class corresponds one of

the other, and none are left over. If such a correspondence is

not possible the classes are not similar. Then any two similar

classes have something in common, which is not shared by

any class not similar to them. This property we call their

number. All propositions about number are really propositions
about the comparison of classes. In the works of Russell and

Whitehead the definition is made apparently more precise by

defining the number of a class as the class of all classes similar

to the given class
;
this class being the same whatever one of

the similar classes we begin with, all the classes have on this

definition obviously the same number. But it might appear
that on this definition the creation of a new class (a new set of

ten things, for instance) makes some change in the class of all

similar classes, and we cannot allow the number of a known
class to be changed by such an event. Actually, however,
Whitehead and Russell, in their Principia Mathematica, do

not use this definition in practice; for they never explicitly

use the notion of a class at all. They proceed by attaching a

* For a great many of the ideas in this chapter I am indebted to Dr
N. R. Campbell's Physics: The Elements, though I do not agree with all

he says. Cf. Phil. Mag. 46, 1923, 1021-1025.
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meaning to every proposition about the class, or the class of

classes, which can be understood in terms entirely of more

elementary ideas, but a class as such is never defined. From
a physical point of view there seems to be no harm in sup-

posing directly that classes exist and that similar classes

have a common property, which we call their number. The

advantages of the method of Whitehead and Russell are that

it makes it possible to give a meaning to any proposition about

numbers whether classes actually exist or not, and that it

avoids the logical difficulties associated with the theory of

types ; but for our purposes these appear to be unnecessary
refinements*.

From the notion of number we can proceed to those of the

sum and product of two numbers. If two classes have no

common member, and we form the class of the two together,

the number of this class is called the sum of the numbers of

the original classes. If we form the class of all possible pairs

of members of the two classes, the number of this class is

called the product of those of the original classes. If a class

has no member its number is called o. If when a is a member
of a class any member of the class is identical with a, the

number of the class is called i . If a unit class is combined

with a different unit class, the resulting class is said to have

number 2, and so on. In this way the finite whole numbers

can be defined, and their arithmetic can then be developed.

6-11. Number is an abstraction. When classes are similar

in terms of our method of comparison of classes, member
to member, we say that they have a common property,

which we call their number. We say in fact that they
have the same number, which is different from the number of

any class not so comparable with them. If in whatever way
the members of two classes are paired off there are always
still some members of one left over when those of the other are

* Cf. Wittgenstein, Tractatus Logico-Mathematicus ; F. P. Ramsey,
Proc. Lond. Math. Soc. 25, 1926, 338-384.
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exhausted, the class with the unpaired members is said to have

the greater number, the other to have the smaller number. The
observed fact is the result of the comparison ; the property com-

mon to similar classes is an abstract idea derived from it. This

derivation by abstraction is a logical step, and is of extremely
wide application. We experience a similar sensation from the

sight of blood, a brick, a sunset, and a Canadian apple; we
abstract a common property, which we call redness, and which

is not possessed by the midday sky, a lemon, or a tablecloth.

All qualifying adjectives depend for their meaning on such

processes, of different complexity in different cases. In such

an expression as "ten men", "ten" is not an adjective

qualifying "men"; this is seen at once if we try to attribute

a meaning to "a ten man". "Ten" here qualifies a class of

men; "ten men" really means "every man in a ten class of

men". Sometimes, when objects are classified in terms of

some method of comparison, the classes can be arranged in

some definite order suggested by the method of comparison

itself; thus we attach meanings not only to the statement that

classes have the same number, but to the statement that one

class has a greater or smaller number than another, and this

makes it possible to arrange numbers in a definite order. This

is the fundamental requirement of a physical magnitude. It

is not possessed by all abstractions. For instance, we can

classify objects according to the colour-sensation they give.

But there is no direct reason suggested by our method of

comparing objects according to colour to indicate what should

be the order of arrangement of red, yellow, and brown. For

this reason colour is not a physical magnitude. In the case

of the pitch of a note, we can say directly from sensation that

one note is higher or lower than another, and all pitches can

be arranged in a single series based on this comparison. Some-

thing more is needed, however, before we can measure pitch.

The existence of an order is necessary to measurement, but

other conditions must be satisfied before we can make a

quantitative determination.
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6-2. The quantities capable of being measured directly are

called fundamental magnitudes. Their character can be

shown by considering one of the most important, namely
length. When two objects can be placed so that they are in

contact at both ends, we find by experiment that calipers or

compasses adjusted so that they fit one object will also fit the

other. Objects can then be classified together if they fit the

calipers when the latter are kept in the same adjustment.
We abstract the common property, which we call the length
of the objects. But the method of comparison by juxta-

position of the objects, either directly or by way of the

calipers, suggests a way of arranging them in order. If the

calipers have to be set to a greater angle to fit one object than

another, we say that the first has the greater length; our

method of comparison not only gives a meaning to length,

but arranges different lengths in order, so that any length is

greater than any that precedes it in the order and less than

any that follows it. Thus length, so far, is on the same footing
as the pitch of a note. But there is a difference.

Consider the method of construction of a millimetre scale.

A long screw is fixed so that it can turn in a bearing with a

screw thread inside it. Whatever part of the screw is within

the bearing, it fits. Every turn of the screw fits any turn of

the bearing. In terms of our method of comparison, every
turn of either therefore has the same length. In the manu-

facture of the scale, it is arranged that whenever the screw

advances through a complete turn a device attached to it rules

a transverse line on the scale. The object whose ends are two

consecutive scale-divisions is therefore compared directly

with the turn of the screw, which is known to have always the

same length. Hence by the very definition of length every
interval between consecutive divisions on the scale has the

same length. When we measure a length we place the ends of

the object in contact with the scale, or we apply calipers to

the ends and apply the calipers to the scale ;
and we count the

scale-intervals between the ends. The statement that the
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length of an object is 153 mm. means then that the object

has the same length as the object formed by placing 153
scale-intervals end to end, all the intervals by construction

having the same length as the turn of a certain standard screw.

We see now the difference between a length and the pitch of

a note. When we put two objects together end to end along
a scale we get a new object determined by the extreme ends

;

we say that in terms of our method of measurement, merely

by counting scale-intervals, the combined object has a mea-

sure equal to the sum of those of the separate objects. But

if we sound two notes of different pitches we do not get a

single note of a new pitch. If the notes are sounded together
we get a chord

;
if they are sounded in succession they give

two distinct notes.

We can now specify in what conditions a property can be

a fundamental magnitude. It must be possible to construct a

scale such that every interval of the scale is the same in

respect of that property, the test of being the same being

comparison with some definite standard by the process that

enables us to recognize differences in that property. The in-

tervals must be consecutive, and the object must be measured

by counting the number of intervals that it overlaps. When
this is done the measure of the property is a fundamental

magnitude. It has the property that if two objects of measures

x and y are placed consecutively, the measure between the

extremes is x + y.

Length is a fundamental magnitude. Angle, as measured

by a protractor graduated in degrees, is another, for each

degree-interval is compared with a standard length in the con-

struction of the instrument. Time, or rather the interval of

time required for a given process, is another. It is measured

by counting the swings of a pendulum or a balance wheel,

which occur in a definite order, so that each has an immediate

successor, and this order is recognized directly by sight or

sound. If two different mechanisms once take the same time

to perform an oscillation, they do so again when compared

again. When two processes, started at the same instant, also
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end at the same instant, we classify them together and
abstract the common property of the interval of time taken.

We measure this by counting the number of oscillations of a

standard instrument, say a seconds' pendulum, the balance

wheel of a watch, or a tuning-fork, that take place during
either process. By its essential structure the interval is there-

fore a fundamental magnitude. It is important that the in-

terval is independent of the actual instant when the process

starts, just as a length measured on a scale as the number of

intervals overlapped by the object is independent of the

position on the scale of the end first placed in position. Time

may also be measured in terms of the rotation of the earth ;

the interval taken by the earth to turn through a standard

angle is taken as the step, and any interval is measured as the

number of times the earth has turned through this angle

during the process. Angle being a fundamental magnitude,
interval of time as measured in terms of it is another.

Mass, as found from a balance, is another fundamental

magnitude. The bodies we call our
"
weights" are con-

structed so that they all counterbalance the same body on the

other pan; and we can recognize when a body more than

counterbalances, or fails to counterbalance, a body on the

other pan. We classify together bodies that counterbalance

the same body, and abstract the property of mass. If then a

body counterbalances the same body as is counterbalanced by
n of our standard weights, we say that its mass is n in terms

of these weights. The number n is obtained directly by
counting, and is evidently a fundamental magnitude.

6-3. Every fundamental magnitude is measured in terms of

a certain property of its own kind, which we call the step
of the instrument. In the case of number the step is the

number i. In the case of length, it is the length of the in-

terval on the scale, or ultimately that of a turn of the fixed

screw thread. For time, it is the interval between instants

when the pendulum, balance wheel, or tuning fork passes its

equilibrium position. For mass, it is the mass of the standard
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weight. In all cases but number itself the standard is to a

large extent at our disposal. In the case of length, for in-

stance, instead of using a millimetre scale we might use a

scale depending on a different screw thread, giving a scale

divided into tenths of inches. The numbers obtained by

measuring the same object on the two scales are different;

the standard therefore matters. But we can compare different

standards. Thus we find that an object measured in terms of

a millimetre scale overlaps 254 intervals; measured in terms

of a tenth-inch scale it overlaps 100 intervals. If we like we
can test one scale against the other directly. The length of

ioo intervals on the tenth-inch scale is then the same as the

length of 254 intervals on the millimetre scale; it is the

common property revealed by the method of comparison.
Now such stretches on a scale may be placed end to end, and

by the additive property of fundamental magnitudes it

follows that if an object has the same length as ioo# intervals

on a tenth-inch scale, where x is any whole number, it also

has the same length as 254^ intervals on a millimetre scale.

If we consider an object that covers 10 intervals on a tenth-

inch scale, we cannot say immediately that it will cover 25*4
intervals on a millimetre scale, because so far we have

attached no meaning to fractions of a scale-interval. Strictly

speaking, the measures of length we have considered arise

when the object exactly stretches from one scale-division to

another. We cannot say at once that an object covers 25-4
intervals ; but we can say that it covers more than 25 and less

than 26 intervals. This must be so, for ten such objects

placed end to end will cover 254 intervals on the millimetre

scale. If each covered 25 intervals all ten would cover just

250 intervals; if each covered 26 intervals, the ten would

cover 260 intervals. The question therefore arises, when an

object has not the same length as an exact number of in-

tervals on the scale, can we assign to it a measure? Evidently
we can, in two different ways. We can read to the nearest

whole number of scale-intervals. In that case we have to say
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that, while 10 tenth-inch intervals and 25 millimetre intervals

have the same length, and lengths have the additive property,
100 tenth-inch intervals and 250 millimetre intervals have

not the same length. There is an apparent inconsistency,
which can be removed only by recognizing that we are not

dealing with a logical process, but with a physical law. We
must admit the principle that our measures are liable to

errors, arising in this case from the finite step of the instru-

ment. The measure "25 millimetre intervals
"

is an approxi-
mation to the true length, not the actual length. The additive

property of lengths, in fact, is a physical law. So long as we
are dealing with exact multiples of the scale-interval its truth

is merely a matter of counting. But when we have recognized
that every object has a length and that most objects do not in

fact cover an exact number of scale-intervals, we have to

choose between the additive law and the adoption of an exact

number for a measure. The additive law being a simple one,

we therefore retain it as expressing the relation that holds

between the true values, as defined in the last chapter, and

regard departures from it as errors. In the case just con-

sidered, the measure of 25 scale-intervals has an error. The
measure of ten similar lengths together is the same as that of

254 millimetre intervals
;
we retain the additive law and say

that, since there is a length in each case, its measure can only
be 25-4 millimetre yitervals. This is the true value. When the

length of one object is given as that of 25 millimetre intervals,

we say that it has an error; if there are, as here, other means

of fixing the true value, we say that the error is 0-4 interval.

Length is not a mere matter of counting ;
fractions must be

admitted.

We can proceed as follows in finding a length. Suppose
that the object to be measured is placed repeatedly against the

scale, so that in each application the first end comes where the

second end was in the previous application. In this way we,

effectively, construct a new scale. At the mth application the

total length overlapped is greater than that of r and less than
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that of s scale-intervals ;
that is, we classify the whole numbers

into two divisions, such that m applications of the object

cover more of the scale than the number of intervals given

by a number in the first division, and less of it than the

number of intervals given by any number in the second

division. If then we are to retain the additive property of

length, we must say that m times the length of the object is

greater than that of any number of intervals in the first class,

and less than that of any number of intervals in the second

class. Therefore the measure of the length of the object must

be greater than that of r/m intervals and less than that of s/m
intervals

;
and the greatest value of r is less by i than the least

value of s. The measure is therefore specified within a frac-

tion i/m of a scale-interval. By varying m we can then find a

series of intervals, each of which must contain the true value
;

alternatively, we divide the rational fractions into two sets,

such that the number in the measure exceeds all in the first

set and falls short of any in the second set. The true measure

may then be any value between the largest in the first set and

the smallest in the second. If m could be indefinitely large

in practice this procedure would specify a cut in the rational

fractions and define a real number. Actually there is a limit

to the length of the measuring scale, and a certain amount

of arbitrariness survives. It might be true, as far as we can

tell, that every length can be associated with a number of

scale-intervals expressed by a rational number.

But this principle becomes untenable when we consider

more complicated laws. We find for instance that the square
of the hypotenuse of an isosceles right-angled triangle must

be twice the square of either side. If the measure of the side

can be associated with a rational number, the only number

that can be associated with the hypotenuse is \/2 times that

number, and \/2 times a rational fraction cannot be rational.

We need more numbers than rational fractions to keep our

laws formally true. But if we admit all real numbers there is

no difficulty.
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The true length of an object corresponds then to a real

number of scale-intervals. Now suppose that the object is

compared with two different scales. The associated numbers
are / and /'. Another object is compared with the same scales,

giving numbers m and m'. Then we must have

/
__
m

l'~m'*

For suppose that we place the objects in steps along the

scales, the first being repeated p times and the second q times,

and consider the length of the object specified by going from

the last mark on the first new scale to the last on the second.

This has a length, on the first scale, equal to pi qm\ if this

is negative it means that we have to go backwards. On the

second scale we get similarly pi' qm'. But if l/m and I'/m'

were unequal we could find such values of p and q that q/p

would lie between them. Then pi qm and pi' qm' would

have opposite signs and we should have to go in opposite
directions in the two cases to get from the end of one derived

scale to the end of the other. But the objects specified by re-

peating the first p times and the second q times have definite

lengths ;
the greater length will be the greater length whatever

scale is used. Hence pi qm and pl
f

qm' must always have

the same sign. Therefore l/m
=

I'jm'',
or

///'
= m/m''. The

numbers associated with any length on two scales are in a

fixed ratio depending on the scales and not on the object itself.

6*4. Starting from the sensory notion of comparison of ob-

jects by juxtaposition, we have obtained the notion of length
as a property by abstraction, and have shown how any length

may be associated with a real number in relation to a certain

scale. We can now proceed to the notion of length as a

quantity. As a property of an object it is identified by a state-

ment of the form "the length of the given object, in com-

parison with a millimetre scale, is specified by the number x ".

We write this in the form "the length of the object is x

millimetres ". On the face of it this statement is an abbrevia-
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tion, and can be understood only by reference to the previous
one and to the whole of the foregoing discussion. We have

nowhere said what we mean by "a millimetre" as a noun,
much less what we mean by "x millimetres". We might
mean "the length of one interval on a millimetre scale".

But length is a property, and we do not know what we mean

by multiplying a property by x. We might attempt to re-

analyse the statement by saying that "x millimetres" has

a structure analogous to that of "ten men". Then it would
have to mean "a class of millimetres, whose number is x".

But clearly a class of lengths is not the same thing as any

single length, even in the case where x is a whole number;
and if x is a fraction there is no such thing as a class of

number x.

There seem to be two possible attitudes to the statement

"the length of the given object is x millimetres". We can

take it as simply an abbreviation
;
if so there is nothing further

to be said. But we may consider that
"
a millimetre

"
is some-

thing that exists and can be freely multiplied by real numbers

to give other things of the same kind as itself. If so, "length"
in this statement is no longer a property of the object, x times

a property cannot in any sense be a property of the same kind.

"Length" is now a new concept, called a quantity. There is

no logical necessity for the existence of quantities; but for

practical convenience of statement they are useful. The
fundamental postulate of the theory of quantities is :

If the measure of a quantity is x, and the quantity is multi-

plied by the number y, we obtain a new quantity of the same

kind whose measure is xy.

On our first analysis this is equivalent to :

If a property of an object, in comparison with a certain

scale, is associated with the number x, and the property of

the scale-interval on the first scale, when compared with a

second scale, is associated with the number y, then when the

property of the object is compared with the second scale it is

associated with the number xy.
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Here the measure of an interval of the first scale in terms

of the second is y, and we have obtained a measure of x in-

tervals of the first scale as equivalent to xy intervals of the

second.

This proposition is true for fundamental magnitudes in

consequence of 6-3. The importance of the expression of it

in terms of quantities may be illustrated by reference to

length. Suppose an object is measured in terms of a tenth-

inch scale and that the associated number is x. We express
this by saying that "the length of the object is x tenths of

an inch". We measure an interval on the tenth-inch scale in

terms of a millimetre scale, and find that the ratio of the two

associated numbers is y. This, by 6*3, is the same for all

intervals, and in particular when the interval is the interval

between consecutive divisions on the tenth-inch scale. Then
the length of the object, in comparison with the milli-

metre scale, is associated with the number xy> and we express
this in the language of quantity by saying that

"
the length of

the object is xy millimetres". That is, the statements "the

length of the object is x tenths of an inch" and "the length
of the object is xy millimetres

"
are completely equivalent for

all values of x. In any proposition containing the expression
"tenths of an inch" we can therefore replace every tenth of

an inch by "y millimetres
"
without affecting the truth of the

proposition. In this language, therefore, a tenth of an inch

and y millimetres are completely equivalent ideas, and we

^ a tenth of an inch = y millimetres.

It is this proposition that provides the usual rule for con-

version of units from one scale of measurement to another.

Similar considerations apply to any fundamental magni-
tude. In the case of mass the actual boxes of weights used

introduce a slight complication. We do not in practice weigh,
for instance, in terms of milligram weights alone. We use

weights found by experiment to be equivalent, in regard to

objects counterpoised by them, to various multiples of the unit.
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The process is equivalent to measuring a length in terms of

decimetres, centimetres, and millimetres and using the known
standards of comparison of the various units to reduce the

whole to millimetres.

6'5, The majority of physical magnitudes are not measured

directly. They occur as factors of proportionality in laws.

Probably the only laws that do not involve such factors are

those of simple constancy, and those expressing addition of

measures of fundamental magnitudes in terms of the same

scale. Nevertheless they may be connected with properties.
For instance, liquids may be classified according to whether

a given solid sinks or floats in them
;
and this relation is un-

affected by the size and shape of the containing vessel, so long
as the solid does not actually touch the sides. Using different

solids we can classify liquids in terms of each. This method

establishes an order among liquids and solids. It is found

that if we have made the classification in terms of one solid

and then try another, the latter either sinks in all the liquids

that the first sinks in, or floats in all those that the first floats

in. There may be an intermediate group such that one solid

floats in them but the other sinks. The liquids may therefore

be arranged in an order such that each supports all solids

supported by those before it in the series, but will not support
some solids supported by liquids after it in the series. Then
each liquid is said to have a greater density than those that

precede it and a smaller one than those that follow it. We
have abstracted from the empirical relation the property of

density. The process resembles in outline that of abstracting

the notion of length from the results of juxtaposition. But

the analogy breaks down at the next stage. We cannot con-

struct a scale of comparison for density by combining objects.

In dealing with length we could put two millimetre intervals

in succession and call the length of an object that fits the two

together 2 millimetres; in dealing with time a process such

that a seconds' pendulum swings twice during it is said to
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occupy two seconds. In each case two of the standard in-

tervals together are greater, in terms of the method of com-

parison, than either separately. It is this fact that makes it

possible to construct a scale. But in the case of density, when
we put together two of the solids used for comparison, the

combined solid does not determine a cut in the series of

liquids outside those determined by the two solids separately ;

in general the cut it gives lies between the two former ones.

There is no way of constructing a scale based on a single

solid; and the measurement of density as a fundamental

magnitude breaks down. But we can weigh a portion of

a liquid on a balance, and find its volume by means of a

measuring glass. Both volume and mass are fundamental

magnitudes, and when the process is carried out several

times on different portions of the same liquid it is found that

they are in fact proportional; therefore they are connected

by a differential equation of the form

yjx. (i)

This is a very simple equation, and its truth can be estab-

lished with practical certainty by a very few trials. Its

solution is - , .

y = Ax
9 (2)

where A is what is known in pure mathematics as an arbitrary

constant. What actually happens is that the integrated form is

the first to be verified, and A is determined in the process of

verification. But the actual observed values do not fit the

form (2) exactly, but approximately. Nevertheless, since the

law (2) is equivalent to the simple differential equation (i) we

say that the equation represents a physical law, expressing
the relation between volume and mass in portions of the

same liquid. The arbitrariness in the solution is found to

correspond to the differences between different liquids; all

give the form (i), but in (2) the quantity A has different

values for different liquids and therefore expresses a pro-

perty of the liquid. We can, that is to say, arrange liquids

jsi 7
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according to the values of A they give, and then give a name
to A. It is then found that the order of increasing values of

A is also the order specified by the results of flotation experi-
ments. We then have a quantitatively determined value, the

mass per unit volume, such that greater mass per unit volume

among liquids corresponds completely to greater or less

density. In this way we can attach a numerical value to

density.

Density is an example of a derived magnitude. It is a pro-

perty capable of being ordered, but not directly measured

in terms of a single scale. A series of experiments must be

conducted, such that in each experiment two fundamental

magnitudes are measured
;
and the measures are found to be

connected by a simple differential equation. This is then taken

as the physical law. An adjustable constant emerges in the

solution, and we call this constant the density. In general

it appears that derived magnitudes are the adjustable constants

that arise in the solution of the differential equations of physics.
In the simple case of the comparison of two scales of measure-

ment we have already introduced a derived magnitude, by

saying that the length of an object is 2-54 mm. for every
tenth of an inch. Here we have begun by establishing a rule

of proportionality valid for any two scales, and have found

the number 2-54 as the actual one applicable to the particular

pair of scales chosen. But its character is less evident than in

the case of density because the properties it enables us to

compare are merely two different ways of specifying the same

thing, the length of a given object. In the case of density the

derived magnitude provides a means of connecting two quite

distinct properties of a portion of the liquid, namely its

volume and its mass.

In some sense a derived magnitude is measured in terms

of a number, but its structure is more complicated than that

of a fundamental magnitude. The units used in determining
the various fundamental magnitudes involved are obviously
reflected in the number that appears in the measure of the
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derived magnitude. The number attached to a density as a

mass per unit volume will depend on whether the mass is

measured in grams or pounds, and the volume in cubic

centimetres or cubic inches. When we say that a density is

1*34 grams per cubic centimetre, the expression
"
1*34 grams

per cubic centimetre" is a complete entity; no item in it,

neither "1*34", nor
"
grams", nor "cubic centimetre", can

be changed without altering the meaning of the whole. For

this reason it is incorrect to speak, as is done in many writings
on the theory of dimensions, of a "mere change of units".

There is no such thing as a mere change of units. If we alter

a unit without altering the number in the measure, we are

speaking of a different physical system, and cannot assert

anything about it without a physical law to guide us ; while

if we already know the law a change of units tells us nothing
that we cannot find out by keeping the same units and

altering the numerical measure*.

In discussing length we began with length as a property of

an object and led up to the idea of length as a quantity.

Between the two a one-one correspondence exists. If two

objects are different in the property, as tested by direct

juxtaposition, they have different measures, and conversely.

Similarly for density, we may regard it as a property, differ-

ences in which are tested by the method of flotation, or as a

mass per unit volume, the mass and the volume being both

measured as fundamental magnitudes. A one-one corre-

spondence exists between the property and the measure. If

we are to proceed to consider density as a quantity we must

verify that its measure satisfies our fundamental law for quan-
tities. To do this, consider a given portion of a substance, and

measure both its mass and its volume in terms of two different

scales. Suppose the numbers associated with the mass on

the two scales to be m and m\ and those associated with the

volume v and v'. Then m'jm is /*, the measure of the interval

* For this reason the so-called
" method of dimensions "

is fallacious. It

should be replaced by that of similarity, as Campbell has explained (he. cit.).

7-2
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of the first mass-scale in terms of the second, since mass is a

fundamental magnitude ; and v'/v is /, the measure of the

interval of the first volume-scale in terms of the second, since

volume is a fundamental magnitude. Hence

m' _ fi
m

v
7

~~fv*

But m/v and m'/v' are the numbers associated with the den-

sities on the two pairs of scales. If the density of a substance

on the first pair of scales is associated with the number unity,

then on the second pair it is associated with the number /*//.

Our equation enables us to extend this by saying that if the

numbers associated with the density on the two pairs of

scales are p and />', then p'/p, for all values of p, is the number
associated on the second pair of scales with the density of a

substance associated on the first pair of scales with the number

unity. This shows that density actually does satisfy the rule

required.
We saw that in any proposition about length we could re-

place a tenth of an inch by 2-54 mm. without affecting its

truth or falsehood. Thus "
x tenths of an inch" and "2-54*

millimetres
"

express the same length, whatever x may be.

Now when the scales are specified "p units of mass per unit

of volume" expresses a definite density. Consider then a

portion of the substance with a volume expressed by v and a

mass expressed by pv on the first pair of scales. We can say
that its volume is v of the first volume-units, and its mass pv
of the first mass-units, using now the language of quantity.

Also its volume is fv of the second volume-units, and its

mass is ppv of the second mass-units. We therefore have, for

all values of v, the result that
"
pv of the first mass-units per

v of the first volume-units
"
expresses the density of the same

portion of substance as
"
ppv of the second mass-units per/z;

of the second volume-units ". But since mass and volume in

the same substance are proportional this implies that a density

expressed by "/> of the first mass-units per first volume-unit
"
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is the same as one expressed by
"

fjLp/f of the second mass-

units per second volume-unit ". We can therefore replace any

density p in terms of the first pair of scales by />&/>//
in terms of

the second pair. We can also, if we like, regard density now
as the ratio of a mass to a volume. For if we choose to in-

troduce the concept of the ratio of two quantities neither of

which is a number, we can write the following equations :

v first volume-units = fv second volume-units,

pv first mass-units = p,pv second mass-units.

Hence by division

pv first mass-units _ ppv second mass-units

v first volume-units
~~

fv second volume-units
"

But the constancy of the ratio of the numerical measures of

mass and volume in the same substance entitles us to cancel

the factor v in both ratios. Also if we call "one mass-unit per
unit of volume" a "unit of density ", we have

p first density-units = pp/f second density-units,

which gives the correct law of conversion from the first pair

of scales to the second. The notion of the ratio of two quan-
tities of different kinds, though it resembles that of quantity
itself in having no logical reason for its existence, can actually

be shown to lead to correct answers, and is therefore justifi-

able on the ground of convenience. Every proposition con-

taining it can if desired be reinterpreted in terms of more

fundamental ideas and then verified.

Derived magnitudes, in comparison with fundamental ones,

are less immediately related to sensation, but more general in

application. Thus a specimen of a given liquid may have any
mass or volume, but each of these fundamental magnitudes
is directly determinable in terms of a standard and a definite

method of comparison. Their ratio, however, is always the

same (with precautions, if necessary, about keeping the tem-

perature and pressure constant). The density is not directly

measured, but remains the same for the same liquid however
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we may vary the volume. Its very existence depends on the

truth of the physical law that the ratio of the measures of the

mass and the volume is constant, and therefore on the truth

of the differential equation

d
EL (\ -
dv \v)

~
'

which holds for any liquid. The constant p that occurs in the

solution of this equation, namely

exists in consequence of the differential equation, which con-

tains no quantity not measured directly ; p is independent of

the volume and therefore is more general in its application
than the original data, but there is nothing in the work to

indicate that it should be the same for different liquids, and

it is in fact found to be different for different liquids.

6-6. Let us return to the question of the solid of revolution

rolling down an inclined plane. It was found that the dis-

placement was proportional to the square of the time, satis-

fying the equation , xJ b * Y e= n?n/2
( T ix o -40* , ^i;

where x is measured in centimetres and t in seconds. The
coefficient 0-2 is a ratio found by experiment to fit a number of

observations and therefore represents a derived magnitude.
In consequence of our earlier discussion of the probability of

physical laws we cannot admit that a numerical constant in

a law, in its ultimate form, is capable of continuous variation.

But we can remove the constant by writing the law in any of

the differential forms

d*x
__ .

d
(
x \ __ .

dx _ 2x
(

.

of which the last two are equivalent. The first has the general

solution i
,
2 f s

x = a + ut + J/*
2

, (3)
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where fl, u, and / are adjustable constants. The second and

third have as their most general solution

x = \ft* (4)

simply. In either case the constant / appears, and can be

identified with the 0-20 of the actual experiment. But a and

u are on a somewhat different footing. They resemble / in

being constants of integration. But they are much more
sensitive to the given experimental conditions. The form (4)

is applicable only if x is measured from the initial position
of rest and t from the time when the body is released. If the

body is originally some way down the scale and moving, or

if the stop-watch is not originally at zero, the form (4) is

experimentally untrue, but (3) still holds with suitable values

of a and u. But / is much more general in its application.

Wherever the body is started we get the same value of/; a

and u are more general than x and t, which vary from one

single observation to another, but they vary from one experi-
ment (series of observations) to another.

Actually we may repeat the experiment with a different in-

clination of the plane to the horizontal. It is then found that

/ itself is different, and is proportional to the sine of the in-

clination a. If we call this sine a our law takes the simple form

# = /. (s)

But we may proceed to experiment with different solids of

revolution, and we find that different solids give different

values of /for the same inclination; in fact /is proportional

to c2
/(c

2 + k2
), where c is the distance from the axis of the

body to the line of contact and k the radius of gyration about

the axis. Both c and k can be found by measurement. The
result of the several series of experiments is that the quantity

=
sin a dt2 8
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is constant for variations of the initial position and velocity,

of the inclination, and of the form of the section of the body

by a plane through the axis. It is therefore a quantity of

much greater generality than the actual acceleration in any
one experiment, and its existence really sums up at once not

one but several differential equations. This, then, is the

ultimate form of the law of the rolling of a solid of revolution,

and the constant in it is the most general derived magnitude
obtainable from such experiments. It can be shown by other

experiments to be the acceleration of a falling body and to be

also a derived magnitude associated with the simple pendu-
lum. These agreements are predictable from the laws of

dynamics and constitute a verification of these laws.

The quantities a and u are really derived magnitudes be-

cause they still arise in the solution of the general equation (6)

and have to be determined in each experiment so as to make
the formal solution fit the observed values of x and t as closely

as possible. But in each experiment they are at our disposal ;

when one experiment is finished the values of a and u asso-

ciated with it have no further application. Consequently

they are not given in books of physical tables
;
but g is always

given. There are cases, however, where a and u or their

analogues have a wide application. We do record the position

of a star and its proper motion at the date 1900.0. The reasons

are first, that these quantities are useful in finding the posi-

tion of the star at any other date, years or centuries earlier or

later; and second, that we cannot put the star back and start

it off differently, so that the quantities are not at our disposal.

In fact so far as experiments go the difference in character

between a and #,/, and g is one of degree of generality ; there

is no fundamental qualitative difference.

6-7. In all numerical work we make free use of mathematics ;

and the numbers that arise go far beyond the simple class-

numbers that we start with. We have already seen, in con-

sidering the properties of the isosceles right-angled triangle,
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that we cannot even restrict the values of our quantities to

rational multiples of the unit without sacrificing the truth of

the laws of physics. The adopted values of the lengths of the

sides, if obtained by making repeated measures to the nearest

multiple of the scale-interval and taking the mean, will always
be rational. We can preserve the exactness of the law only by

admitting the existence of errors in the adopted values them-

selves; and that implies the existence of an unknown true

value behind the adopted value. This is the justification of

the assumption we made in discussing errors of measurement,
that there is a true value, which our observations may enable

us to identify within limits, but never exactly. Further, the

whole series of rational numbers is insufficient to specify all

the possible true values
;
and there seems to be no reason for

not admitting the whole series of real numbers.

This brings us to an attitude towards real numbers that

seems to agree better with that of ordinary mathematicians

than with that of Whitehead and Russell. The usual procedure
in defining y^ for instance, would be to divide the rational

fractions into two classes, such that the squares of those in

one class were all less than 2, and of those in the other class

greater than 2. The number separating the two classes is then

called \/2. The principle is known as Dedekind's section.

Whitehead and Russell, however, point out that there is no

a priori reason to believe that there is any number that is

greater than all numbers of the first class and less than all of

the second class; Dedekind's section assumes an existence

without proof. Whitehead and Russell proceed by defining

\/2 as the class of all rational fractions whose squares are less

than 2; this class exists in the same sense as other classes.

But addition and multiplication of classes have to be redefined

for non-rational numbers so as to keep the ordinary laws of

algebra true. Thus \/z + V3 has to be defined as the class of

the sums of all pairs of rational fractions such that one has a

square less than 2 and the other a square less than 3, and

<V/2 x \/3 as the class of the products of pairs of rational
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fractions satisfying the same conditions. In this way they
are able to establish the existence theorem for real numbers

and develop their algebra without assumption. But from the

physical point of view there is no apparent reason to believe

that the numbers that occur in true values of variable

quantities are really classes of rational fractions, while there

is direct reason to believe that these numbers do exist and

are different from rational fractions. From our point of view

Dedekind's assumption is therefore open to less objection
than that of Whitehead and Russell. The utility of the latter

is that it does establish what might otherwise be open to a

certain amount of doubt, that there is no internal inconsistency
in assuming the existence of non-rational numbers and

applying to them the ordinary rules of algebra established

for rational numbers.



CHAPTER VII

MENSURATION

'Tis distance lends enchantment to the view.

THOMAS CAMPBELL, Pleasures of Hope

7-1. We are now in a position to begin the discussion of the

most fundamental physical science, that of the relations

between lengths. We shall call it mensuration. It requires to

be distinguished at the outset from the subject known to pure
mathematicians as geometry. The latter is a branch of pure

logic. It proceeds by taking a number of general axioms, ir-

respective of whether these are physically tested or capable
of being tested, and develops their consequences by purely

logical rules. Physical measurement plays no part in it. For

us, physical measurement is the whole raison d'etre of the

subject. By comparing our measurements we establish cer-

tain laws
;
these lead to generalizations, which in many cases

resemble the axioms of forms of geometry. But the structure

is essentially different. In geometry the laws are assumed a

priori, and the particular results are consequences of the laws.

In mensuration the particular results are the essence of the

matter, and the general laws are derived from them by a

process of generalization based on the simplicity postulate.

It might nevertheless appear that, in spite of the opposite
modes of approach, the total content of mensuration and

geometry might be the same, the axioms of geometry being
the same as the laws of mensuration. But this is not the

case.

All projective and descriptive geometries can evidently be

ruled out at once. A requirement of all such geometries is

that no notion analogous to distance is to be used. Since

distance forms our subject-matter, there is no common ground
whatever.
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Euclid's geometry is the closest existing analogue of men-

suration, and requires a full discussion. The notion of length
is freely used in it. His points are sufficiently like what we
have so far called the ends of objects, and we can produce
close enough physical analogues of his straight lines, planes,

and circles. He freely uses the principle of juxtaposition as

a test of whether one quantity is greater or less than another ;

here he follows the ordinary physical method of comparing

lengths.

Nevertheless his system differs from any possible system
of mensuration

;
in fact it is neither a mensuration nor a geo-

metry, but a mixture of the two. For instance, he uses com-

passes to draw circles, a legitimate physical procedure, but

refuses to use them to transfer distances. In I (2), when he

wishes to draw from a given point a line whose length is equal
to that of a given straight line not through the point, he makes

a complicated construction to avoid having to lift up the com-

passes and transport them. Yet in I (4), in testing the equality

of two triangles, he supposes one picked up bodily and super-

posed on the other. The ordinary properties of rigid bodies

are supposed to be possessed by triangles (drawn on pieces of

paper) but not by a pair of compasses. The usual criticism

from the geometrical standpoint is to reject the proof of I (4)

and provide a new one
;
from the physical one the proof of

I (4) is valid in certain conditions, though the result is true

even when the construction involved cannot be carried out,

but the complication of I (2) avoids only a difficulty that does

not exist.

Euclid postulates further that any two points can be joined

by a straight line. The physical analogue of this is often true,

but not always. The points may be on the surface of a convex

body too hard to be bored. Yet the distance between the

points exists, for it can be measured by applying compasses
first to the two points and then to a scale. Physically the

notion of the distance between two points is more general

than that of the straight line joining them.
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The most important departure of Euclid's treatment from

any possible account of mensuration, however, is in the dis-

cussion of parallels and the related propositions. We may refer

to the second postulate, that a straight line can be produced
to any length, however great, and to the fifth postulate, also

called the twelfth or parallel axiom. Both of these postulates

have been criticized by modern geometers as not obvious.

In mensuration, on the other hand, they are not only not

obvious but demonstrably false. We cannot produce a phy-
sical straight line to a length greater than one determined by
the size of the body it is drawn on

;
it may be extended by

fastening other bodies on, but there is a limit to this process,

and therefore to the length of the line. Again, it may be

possible to find out by our existing methods of measuring

angles that, when one straight edge crosses two others, it

makes the sum of the interior angles less than two right

angles, but it does not happen in all such cases that the two

straight edges it crosses intersect; for in practice they often

cannot be made long enough, or they may not be in one plane
a detail not allowed for in the usual statement of the

postulate.

The alternative known as Playfair's axiom does not meet

the difficulty, for it is not true that of two intersecting straight

edges at least one must intersect any other
; Playfair's parallel

axiom fails in just the same way as Euclid's.

Criticisms of luiclid's Elements have usually been made
from the geometrical standpoint and not from the physical

one, and its virtues from the one are usually its vices from the

other. His test of equality is always superposition. Two
lengths are equal if one can be superposed on the other. The
same applies to two angles. Two areas are equal if one can

be cut up and the pieces placed so that they exactly cover the

other. These are physical methods of comparison ;
and just

for that reason they are rejected by geometry. His procedure
is such that numerical measures do not arise; addition and

subtraction of quantities are done on the actual objects them-
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selves. He thereby sacrifices the convenience of being able

to resort to algebra; but he also avoids a trap. Euclid would
never have said that a length of 1-5 cm. is converted into one

of 1-5 in. by a "mere change of units"; nor would he have

said that the mass of the sun is 1-5 kilometres.

The word "geometry" literally means the measurement of

the earth, and Euclid's predecessors were doubtless largely

inspired by the needs of surveying. By this time, how-

ever, the name has become so closely connected with the

branch of pure mathematics that it seems hopeless to rescue

it. Nor is it, I think, worth while. The measurement of the

earth is now generally known as "geodesy", and what we
need is a word to describe the theory of measurement of

length in general, not merely in relation to the earth. "Men-
suration

"
seems entirely satisfactory, saying neither more nor

less than it actually means.

It is a fact that when Euclid's theory gives a quantitative

result, and the relevant construction can be carried out, the

result is always found to be physically correct*. Nevertheless

his axioms assume so many things possible that are in fact

physically impossible that a radical reconstruction is needed.

The modern physicist will not share his antipathy to numerical

measurement, and will recognize in his treatment of angles

and areas a perception that these, like length, are fundamental

magnitudes. If he accepts the notion of quantity he will not

refuse to say that a square centimetre is literally the square
of a centimetre ;

but it is not strictly necessary to say so. The

question that does actively arise at the outset, however, is

whether we should introduce from the start any fundamental

magnitudes besides length. Euclid assumes in I (13) that if a

pencil of coplanar lines is drawn through a point, the angle
between the extreme lines is equal to the sum of those be-

tween consecutive lines of the pencil ;
and in I (4) he supposes

that angles that can be superposed are equal. These postulates

* Except in the extreme case of the displacement of star images by
the sun's gravitational field.
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make it possible to construct a scale for measuring angles in

terms of a unit. Such a scale we may at once call a protractor,

and angle is a fundamental magnitude. Again, in I (35) he

compares the areas of parallelograms by cutting them up and

superposing them, and his later work with triangles and rect-

angles indicates that area also is a fundamental magnitude.
There are therefore three different fundamental magnitudes
in the theory, and in the development they continually in-

fluence one another. All can be shown to exist in the sense

that their measurement can actually be carried out, and there

is no theoretical objection to developing the theory of all

together. But there is a practical objection. Angles and areas

can actually be superposed only in special cases; projections

on the bodies that carry them usually interfere with the super-

position. Again, the addition of angles or areas is meaningless
unless they are placed in the same plane; thus the direct

measurement of either depends on the existence of physical

planes, whereas the measurement of distance by means of

compasses and scale is independent of the existence of planes.

Since distance is much more generally measurable directly

than either angle or area it is desirable to develop the theory,

if possible, on the basis of the properties of distance alone.

72. Mensuration deals essentially with the relations between

measurements of distance on rigid bodies. It may be sug-

gested that before it can be discussed we should define the

terms
"
distance

" and
"
rigid bodies ". Now the requirement

of a definition is that it must make it possible to recognize

the defined object when it actually occurs. It is of no value

to say that a rigid body is one such that the distances between

all the points of it are unaltered by any displacement, nor to

define relative motion as change of distance between parts

of a system, unless we have some way of recognizing when
distances are altered. Distance, again, cannot be defined in

terms of the properties of rigid bodies unless we have first

some way of recognizing the rigid body when we meet it.
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None of these notions can be defined in terms of the pro-

perties of
"
space", because we have no means of recognizing

space directly; distance in space, for instance, cannot be

determined except through measurements, which at once re-

introduce material scales, which the reference to space was

intended to avoid.

The solution seems to be that neither
"
rigid body" nor

"distance
"

is directly recognizable, and that both are derived

from still more elementary notions, several experimental facts

being used in the process. Let us start from the notion of a

body, without considering how we arrive at this concept. It

is a fact that we can make permanent marks on bodies, which

we can recognize afterwards. It may be found that if we have

two marks A, B on one body and two others, C, D on another,

we can place the bodies so that A coincides with C and B
with D. If a pair of compasses or calipers is adjusted so that

one point coincides with A and the other with B, then it can

be transported without readjustment and placed so that one

point coincides with C and the other with D. All pairs of

marks that can be fitted by the compasses in the same adjust-

ment are classified together; we abstract the common pro-

perty of distance, and say that all such pairs are equidistant.

It may happen that two equidistant pairs can be superposed

directly; but this is not always possible, because material

obstructions may interfere. It is clear, in particular, that

different pairs of marks on the same body cannot be super-

posed without deforming the body, even if they are equi-

distant. Now when a fit of pairs of marks has been obtained,

either directly or through the use of compasses, it may be

found that a fit is always obtained again in any subsequent
trial. If this holds for numerous pairs of marks on the same

body, we can generalize it as a law for that body. Such a

body is called rigid. Compasses are rigid bodies provided
their adjustment is not altered. If there is a doubt as to

whether the adjustment has altered they can be tested by

application to several pairs of marks that they previously
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fitted
;
and if they fail we can tighten up the hinge or get a

new pair. In the first place distance is simply a property of

pairs of marks on rigid bodies.

It is also a fact that bodies can be made with edges ;
if two

bodies touch at two points they may touch at a continuous

set of intermediate points. In general, when this is done, if

we turn one or both of the bodies about so that they remain

in contact at two given pairs of marks, the intermediate marks
that were formerly in contact separate. But it is again a fact

that bodies can be made with such edges that they do remain

in contact at intermediate marks when they are turned about

two coincident marks. When this has been found to hold in

a number of trials it can be inferred with a high degree of

probability that it will hold in any subsequent trial. In such

cases we call the edges straight.

The reservation must be made that the bodies, in both types
of test, must receive only ordinary treatment. It is easy to

recognize by the sensations that we call sensations of force

when exceptional treatment is taking place. If bodies or

edges fail to satisfy our tests we say that they are not rigid or

not straight, or that exceptional treatment has taken place.

In that case they do not form part of our present subject-

matter. The important thing is that there are many bodies

that do satisfy the conditions. If all compasses were made of

rubber and all bodies of plasticene, this would not be so, and

then perhaps there would be no science of mensuration
; but

actually we can classify bodies and edges according as they
do or do not satisfy our tests, and confine our attention for

the present to those that do. The others are reserved for the

subjects of mechanics.

So far we have been able to define only identity of distance

and not the meaning ofgreater and less in relation to distance.

We need also to be able to establish a meaning for the state-

ment that the distance AB between one pair of marks is

greater than the distance CD between another pair. To do

this it is necessary to be able to establish two other pairs of

jsi a
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marks A' and B', C' and Z)', such that by our criterion the

distance AB is the same as the distance AB', and the distance

CD the same as the distance C'D', and so that A'B' and CD'
are directly comparable. One method of comparison would

be to say that AB' is greater than C'D' if the compasses have

to be set to a wider adjustment to fit the former. Another,
which is more closely related to actual measurement, is to use

the straight edge. If A' and B' are on a straight edge, there

is a definite path from A to B' along the edge. If the marks

C' and D' are chosen on the same edge so that one lies

between A' and B' and the other either also lies between them
or coincides with one of them, then the part of the edge
A'B' includes the whole of the part from C' to D' with some-

thing over, and we say that the distance A'B' is greater than

the distance C'D', and therefore that the distance AB is

greater than the distance CD. The introduction of the straight

edge in defining the meaning of greater than in relation to

distance seems to be necessary because, while unequal dis-

tances cannot in any case be superposed by moving the

respective solids about, there are also cases where the dis-

tances are really equal but cannot be superposed on account

of the form of the solids, and we must provide ourselves with

a means of distinguishing between real difference and mere

failure to carry out a strict comparison.
We can now proceed to the construction of a measuring

scale on a straight edge and to the actual measurement of

distance by the principles of the previous chapter.

7-3. So long as marks lie on the same straight edge, the dis-

tances between them follow the simple rules of addition and

subtraction. But we also require propositions connecting

distances between marks not on the same straight edge. This

brings us into a new domain, and at least one new experi-

mental fact is needed to serve as a starting-point. As has

already been indicated, propositions involving angles or

planes should be avoided as far as possible until we can define
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them in terms of lengths. Our physical treatment must begin
with an experimental law connecting distances between marks
not on the same straight edge.

7-31. Consider any three marks, O, Xy
Y whose mutual

distances are known, and consider the ratio

> _ OX* + OY*-XY*
2.OX.OY

' (I '

If O, X, and Y lie on the same straight edge, and O is not

between X and F, then

XY=OX~OY, and A = i. (2)

If O, Xy and Y lie on the same straight edge, and O is

between X and F, then

XY - OX + OY, and A - - i. (3)

If O, X9
and Y are not on the same straight edge, A in

general is found by experiment to lie between i.

But if X and Y lie on two rigidly fixed straight edges

meeting in O, then wherever X and Y may be taken on these

edges A has a constant value; that is, A is independent of

both OX and OY.
This proposition lacks the chief requirement of a postulate

in a geometry, namely that of possessing a natvctJthat disarms

suspicion. But for our purpose what matters is that there

should be a practical way of ascertaining whether it is true
;

and it is capable of test in almost all cases, and such test has

already been carried out in countless experiments in practical

plane "geometry". It has perhaps not been tested directly

with the full accuracy of modern measuring apparatus, but

enough has been done to establish it in an enormous number
of cases. It is not extremely simple in form, but the number
of verifications is so great that if it has any appreciable prior

probability the probability of all inferences from it must

amount to practical certainty. We therefore suppose it to

hold in general and attempt to develop its consequences.

8-3
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7'32, Instead of using the ratio A itself, it is convenient to

work with a certain function of it. We put

A = cos a, (4)

where the cosine is defined as in works on analysis. This

defines a value of a less than TT. Also since A is independent
of the actual values of OX and O Y, its value expresses a pro-

perty of the pair of edges OX and OY as wholes and not of

any particular marks on them. The same applies therefore to

a. We denote a usually by Z. XOY and call it the angle

between OX and OY. Then (i) is equivalent to

XY* = OX2 + OY2 - 2OX.OY cos XOY. (5)

This is practically Euclid n, 12 and 13.

733. It may happen that A = db i when the three marks do

not lie on a straight edge. In any case when A = i we
call the marks collinear. If A = i we say that O is between

X and Y, and L XOY =
TT; if A = + i, we say that O is not

between X and Y, and L XOY o. It is also found that

if O, Xi, X2 are collinear, and O, Y1 ,
Y2 are collinear,

+ OYS - XiYf 0X1 + OY2
2 -

XjYf
2OX1.OYl

irrespective of whether the collinearities are given by actual

straight edges. Also there is only one possible position Y
collinear with O and X, such that OY has a given value and

O is not between X and Y. Conversely in experiments on

a laboratory scale, if O and X are already assigned, we can

place Y so that OY has any given value. We can also

generalize to collinear sets of points the principle corre-

sponding to Euclid's postulate that two lines cannot enclose

a space, namely that as Y proceeds from O to X and beyond
it there is only one possible path such that the points O, X,
and Y are always collinear and along this OY increases

continuously.
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We can now proceed to develop the theory*.

7'41. If A
y 5, C are three marks as in Fig. i, we have

D An AB* + AC2 - BC*
cos BAG = Tn-^Ts2AB.AC

Write BC =
a, C^4 = 6, ^B ==

c, and 2s = a + b + c.

Then
"

+ c2 - 2

cos BAG =
26^

- cos BAC\l __(~(b- c)
2 + 2

\*C\* (-
J
=

(^

coscos

(
t -b)(s-c))*=

\*_ /(b + c)
2 -

a*\*_ (s (s
-

j
- ~- - -

tan
Sin

tan

Corresponding formulae for the other angles are obtained

symmetrically.

....... -^.. --------
/? C B

t Q B,

Fig. i Fig. 2

7-42. By the formula for the tangent of the sum of two angles,

i / r, x,^ ^ tan iR4C + tan A5CM
tan 4 (IMC + BCA) = ^Il

= tan (^ -

Hence /.B^IC + LAEC + LEGA = TT. Euc. i, 32.
* In the figures continuous lines denote actual straight edges ;

dotted

lines connect only marks the distances between which are considered,
but which need not be connected by actual straight edges .
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7.43. If B19 O, B2 are collinear marks (Fig. 2), and A is

another mark,

ABS = OA* + OBS - 2OA .OBl cos AOBt , (i)

AB* = OA* + OB* - 2OA .OB2 cos AOB2 , (2)

and also = AB^ + B^Bf - 2AB1 .B1B2 cos AB^. (3)

But ^2 = BiQ + OB2 , (4)

COS ! , ,

, (5)

by (i). Substituting from (4) and (5) in (3) we have

AB* = ^5^ + JSX52
2 - 25^ (OBl

- O^ cos AOBJ
+ JBA> - 2B1B2.OB1

. OB2 cos AOB^ , (6)

whence, comparing (2) and (6),

cos AOBl + cos ^4O52
=

o, (7)

and therefore ^^Q^ + LAOB2
= TT. (8) Euc. i, 13

744. It follows as an immediate corollary by Euclid's method

that when two straight edges cross the opposite angles are

equal. Euc. I, 15.

7-45. It also follows from 7-42 that

LAB^O + LB&A + LOABi =77, (i)

LOB^A + LB2AO + /LAOB2
=

77, (2)

LBJB2A + Z.B2AB: + LAB^B2
== TT. (3)

Adding (i) and (2) and subtracting (3), and cancelling iden-

tical angles,

LB^OA + AOB2 + LOABl + LB^AO
-^B2ABl

= 7r. (4)

But by 7-43 L BIQA + LAOB2
= TT. (5)

Hence L OAB^ + LB2AO = LB2AB1 . (6)
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Thus angles so placed that they have one common arm and
so that collinear points exist on the arms, and measured by
the rule 7-32 (4), have the additive property.

7-46. If two straight edges OA and OB meet in O, and if

cos AOB is negative, and if O is not the end of OB, it is

possible to make a mark Bl on OB so that cos AOBl is

positive.

For by 7-43 we need only take B1 on the side of O opposite
to B, and the result follows.

7-47. If A be outside the edge OB, and if B be on that

part of it where cos AOB is

positive, and if OB is greater

than OA cos AOB, then it is /
possible to make a mark C on

OB such that ^

'

-.
C D

Fig. 3

For we can make a mark C
on OB at a distance OA cos AOB from O. Then

AC* = OA* + OC2 - zOA . OC cos AOB
= OA*-OC*, (i)

which proves the proposition.

Also
=0

'

whence LOCA =
\*n. (3)

We have therefore constructed a triangle with one angle

equal to \TT. We can now introduce the definition of per-

pendicularity. If the angle between two intersecting straight

edges is TT, they are said to be perpendicular. Euclid I, 47
follows immediately from the formula 7-32 (5).

If OB is a straight edge with a mark C on it such that

L OCA is \IT, where A is a mark not on OB, then C is called

the foot of the perpendicular from A to OB.

7-48. If two straight edges OA, OB intersect at O (Fig. 4),

and C is any mark in OA, and if the length of OB exceeds
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OC sec AOB, then we can make a mark D on OB so that

C is the foot of the perpendicular from D to OA.
For we can make a mark Z> so that OD = OC sec AOB,

and the perpendicularity follows as in 7*47.

B
xl

O C A A*-----------J O
Fig. 4 Fig. 5

7-49. If the angle AOB (Fig. 5) is |TT, we have

OA
cos = -- -

AS
sin (X4JB = cos (^ - O^4B) = cos OjB^4 by 7-42

OB . .=
AB' M

t
_.. sin^Ofi OB . .

tan ^=
cos^OB

=
03' (3)

with corresponding formulae for the other trigonometric

functions. These results thus emerge as laws, and not as

definitions of the functions as in ordinary trigonometry.

7*50. Consider three edges meeting in a point O (Fig. 6). It is

always possible to fix A in one of them so that A is the foot

of the perpendiculars from marks B and C on the other two,

since the condition of 7-47 can always be satisfied by making
OA short enough. Then

AB = OA tan AOB, (i)

OB = OA sec AOB, (2)

AC = OA tan AOC, (3)

OC = OA sec AOC, (4)

- OB* + OC2 - 2OB.OC cos OC
(sec

2 ^4O + sec2 ^4OC
- 2 sec ^O sec AOC cos OC). (5)
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Also

Ca = AB* 4- AC* - zAB.AC cos BAG
= OA* (tan

2 AOB + tan2 ^4OC
-

2, tan ^4OB tan ^4OC cos BAG). (6)

Equating (5) and (6), and multiplying by cos AOB cos AOC,
we have

cos BOC = cos AOB cos ^fOC
+ sin AOB sin .4OC cos J&4C. (7)

Fig. 6

This theorem introduces the third dimension for the first

time, for it allows two different lines AB, AC to be both

perpendicular to an edge OA at the same point. The formula

(7) is the analogue of a familiar one in spherical trigonometry,

though the sphere as such has not yet appeared.

It follows as* a corollary that LBAC is independent
of OA.

If B, A, C are collinear, cos BAG = -
i, and (7) leads to

LBOC - /.AOB + LAOC.

This is equivalent to 7-45 when actual straight edges connect

the marks.

7-51. We can now proceed to a discussion of planes. If

we take two fixed marks O and O', and any path from

O to O', then at one end of the path the distance from

O is greater than that from O', and at the other end the

opposite is true. Both distances vary continuously, and
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therefore there is a possible position on the path such that

the distances from O and O' are

equal. Marks equidistant from two ^'/!
fixed marks are said to be on theplane s**''*/' I

determined by the fixed marks. ,*''* /*' j

7-52. If two marks P and Q are on
P *\^\ G

\
a plane, every mark R collinear with

%

\^\
them is on the plane. For since P ^0'
and Q are on the plane we can write Fig. 7

PO = PO'=p; QO = QO' = q; PQ =
r, (i)

and
2 2 __ 2

cos OPQ = cos O'PQ = -~^ q = *> say. (2)

Then RO* - PO2 + PI?2 - 2PO .P# cos OPQ

= PO'2
by symmetry. (3)

753. If two planes are determined by pairs of marks O and

O', H and H'
9
three circumstances may arise. All positions

P in the first plane may be equidistant from H and H'
;

then the planes are identical. All positions P in the first

plane may be such that PH> PH'
y
or all such thatPH<PHf

:

then the planes have no common point. Some positions P in

the first plane may be such that PH > PH7
,
and others such

that PH < PH' . Then we may classify the positions on the

first plane according to the sign of PH PH'
;
on any path

from a position where this is positive to one where it is nega-

tive, the difference varies continuously and therefore passes

through the value zero. Thus it is possible to assign marks

common to both planes ; they are said to be on the line of
intersection of the planes.

All marks on the line of intersection of two planes are

collinear. For if Q and R are on this line, every mark

collinear with Q and R is common to both planes, by 7-52 ;

hence the marks collinear with Q and jR constitute the line

of intersection. Euc. xi, 3.
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754. Any three marks A, B, C lie on a plane. For if we take

a point B' collinear with BA so that B A = AB, and one C
on CA so that C'A = AC, then B' and B determine one

plane and C' and C another. Clearly A lies on both planes.
If O is another common point (Fig. 8) we have

O5' = O5; OA = OA\ AB' = AB,
and therefore L B'AO = Z. O^4B = |TT.

Thus AO is perpendicular to AB, and similarly to AC. Now
take O' collinear with O^4 so that AO' = OA Then

and therefore O'B = OB.

Similarly OC" = OC,
and A, B, C are all on the plane determined by O and O'.

It follows from 7-54 and 7-52 that if we start with any
three marks we can generate a plane containing them by

joining up points collinear with pairs from the original three.

O
Fig. 8 Fig. 9

7*55. In general a line has one point in common with a plane.

For if P and ) are marks on the line (Fig. 9) and O, O'

determine the plane, and R is another point on the line, in the

direction PQ,
OR2 = OP2 + P#2 - 2OP.PR cos OPQ, (i)

O'R* = O'P2 + P#2 - zO'P.PR cos OT0, (2)

and therefore OR = O'/? if

2PR (O'P cos OT0 - OP cos OP0) = O'P2 - OP2
. (3)

If then O'P cos O 7

P0 - OP cos OPQ and O'P2 - OP2 have
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the same sign, there is a positive value of PR satisfying (3).

If they have opposite signs there is no positive value of PR
satisfying (3). But if Q' is on the line and P is between Q and

)', there is a suitable point R in the direction PQ', since

O'P cos O'PQ' - OP cos OPQ'
= -

(O'P cos O'PQ - OP cos OPQ).

Clearly the conditions for suitable positions of R in the

directions PQ and PQ' are mutually exclusive, and there is

always one position ofR that satisfies the conditions. If how-
ever O'P cos O'PQ=OPcosOPQ the admissible value ofPR is

infinite ;
in this case we say that the line is parallelto the plane.

7*56. It follows that in general there is one point common to

three planes.

Lines in a plane are said to be parallel if they make the

same angle with a given line.

7*57. Parallel lines have no common point at a finite distance.

For if (Fig. 10)

LDBA = TT -a.

If then AC and BD had a common point L, we should have

the sum of the angles of the triangle ABL equal to

a + (TT
-

a) + /-ALB = TT + LALB.
But this is impossible since A, B, L are not collinear and

o.

*! /D
i '

Fig. 10 Fig. ii



MENSURATION 125

LECA^TT-
LEBD + LEDB = TT - LBED.

= LEBD.
= ^lZ)B.

7*58. Any transversal intersecting the original one makes the

same angle with two parallel lines. Suppose the parallels are

given to make the same angle a with the line AB, and that

CD is another line meeting them (Fig. n). Let Z.ACD = j3.

Then

But

Therefore

7-59. If three lines AB, AC, AD are all perpendicular to OA,
they are in a plane. For if we make AO' = O^4, we have

BO' 2 = ABa + ^4O' 2 = AB* + OA* = BO2
,

and so on. Hence B, C, and D are all in the plane determined

by O and O 1

.

7-60. Consider any two points L, M and a straight edge OP.

Suppose points A on OP, B on OL,
C on OM to have been found such P
that BA y

CA are perpendicular to

OP. Let

OL =
r, OM =

r'y A

Then

cos LOM = cos cos 0'

+ sin sin 6' cos

(i)

, (2) Fig. 12

by 7-50. If AK be any other straight edge through A per-

pendicular to OP, K, A, B, C are in a plane, by 7-59. Let

Then LBAC = $-$. (3)

LM*= (r cos 6-r' cos 0')
2 + (r sin 9cos<j>- r' sin

X

cos <

r

)
2

+ (r sin 6 sin <
- r' sin & sin <^)

2
. (4)
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If now we define x, y, z for L by the equations

x = r sin 9 cos
<f> ; jy

= r sin 9 sin <
; z = r cos 0, (5)

we have
^ _ ^ 2 + ^ __^2 + ^ _ ^2

. (6)

Thus distance has been expressed in the standard form

appropriate to Cartesian co-ordinates.

The angles <j>
and <' are independent of the position of A

provided AK is always taken in the same plane. The angle
between two planes is defined as the angle between two lines

in them perpendicular to the common line, and is constant

by the corollary to 7-50.

Theabove definition ofCartesian co-ordinates is applicable in

all cases where it is possible to find the distances and bearings of

our marks, whereas the usual definition is not applicable unless

we can actually find the projections on the three co-ordinate

axes. We have still to show that our x, y, % are identical with

the usual co-ordinates when these can be measured.

7'61. If we put x = Ir, y = mr, z = nr, and consider two

marks L, M given by (xl9 yl9 ^), (x2 , y2 ,
z2) we have from

7'6 (2) cos LOM = 44 + mjn^ +

7-62. At any point of OP, 6 = o, and therefore / = o, m =
o,

n = i. If OQ is perpendicular to OP, it appears from 7-61

that n = o at Q. If also Q is in the same plane as OAK,
<f>
= o at Q y

and m = o. Hence at Q I = i, m =
o, n = o.

If OjR is perpendicular to OP and OQ, then again by 7-61,

at R, I = o, m =
i, n = o. Thus OQ, OR, OP are the co-

ordinate axes as usually understood.

763. If L (x, y, z) be another point, the angle between OL
and OQ is given by

cos LOQ = /. i + ni.o -f n.o,

and therefore by 7*49 the projection of OL on OQ is rl or x.

Similar results hold for the projections on the other axes. This

gives the identification required. If one or more of /, m, n are
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negative, the corresponding foot of the perpendicular from
L on the axis lies on the production of the axis beyond O.

7*64. If now a plane is determined by two points (ay b> c),

(a' y b', c'\ we have for all points on the plane

(x
- a? + (y

-
V)* + (*

-
c)*

that is,

= (*-*T + (y-*')
a + (*-Oa

; (i)

2 (a
-

a') x + 2 (b
-

b') y + 2 (c
- c

r

) %
= a* + 62 + c2 - a'* - A'2 - c'\ (2)

Hence a plane has an equation of the first degree in the co-

ordinates. Conversely if we are given an equation of the

first degree, which in general involves three independent

parameters, we can in a triply infinite number of ways assign
the six co-ordinates of O and O' so as to make (2) fit it. Thus

every equation of the first degree represents a plane.

It follows that a straight edge is represented by a pair of

equations of the first degree. Also if a plane has the equation

Ax + By + Cz + D =
o, (3)

and P(xly yl9 zj, Q (x29 y2 ,
*2) are two points satisfying (3),

then

\ m^ H- w2 m*L + m2

* ml -\r m^ /

also satisfies (3).

If then P and Q'are points common to two planes, the point
R is also common to the two planes. If we call R (x, y, z) we
see that (x, y, z) satisfy

*-*i _ y-yi = *-*i / x

- - -' V

the usual form of the equations of a straight line.

From these results the usual analytic development can be

carried out.

7-7. The foregoing theory has been developed from the

notion and properties of distance alone. Most of the pro-
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positions inferred are verifiable by experiment, and have, of

course, actually been verified. But other appliances exist that

often enable us to supplement the theory and extend its

practical application. The first we shall consider is the

protractor, or graduated circle. A rigid body with one face

plane, as tested by the application of a straight edge, is made
so as to have a circular edge on this face

;
that is, every point

on the rim is at the same distance from some fixed mark on

the face. Equidistant marks are made around the rim, the

distance between consecutive marks being compared in the

process of manufacture with the length of the turn of a

standard screw in much the same way as in the construction

of a scale on a straight edge. Then if we consider a triangle

formed by the centre and any two consecutive marks on the

rim, all such triangles have the same sides, and therefore the

same angles. Now if we place the protractor with its centre

in contact with the common mark on two intersecting

straight edges, and with the rim intersecting both edges, we
can count the number of scale-divisions on the rim between

the two edges and use it as a measure of the angle between

the edges; for either determines the other. Thus the pro-
tractor measures angle as a fundamental magnitude.
The actual distance between scale-divisions on a protractor

is arbitrary. In practice it is always chosen so that 360
divisions make up the complete circumference and return to

the starting-point. If necessary finer graduations are inserted

within the original 360. The degree is the angle subtended at

the centre by two consecutive divisions on the edge. Now in

our measures of angles so far we have specified the angle in

terms of its cosine by the series definition of the latter
;
the

number attached to a right angle is
|-TT, and that attached to

a complete circumference is ZTT. Is an angle, in terms of this

measure, merely a number? The test seems to be in attempt-

ing addition. 2 sheep and 3 sheep make 5 sheep. But 2

sheep and 3 houses do not make 5 of anything. Now do an

angle 2 and the number 3 make 5 of anything? It appears
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that they do not. Angle is of a different kind from number,
and when we specify it in such a way that the number
attached to a right angle is JTT we are really measuring it in

terms of a conventional unit, which we call the radian, and is

not a number. We should therefore write

\TT radians = 90 degrees.

This provides the necessary rule for converting measures of

angles from one unit to another.

The direct measurement of angle with a protractor now

provides a complete substitute for the determination of the

angle between straight edges in terms of measured distances.

It is still not possible in general when we want the angle
XOY and the mark O is not connected to X and Y by actual

straight edges. But we can supplement our methods again

by using a property of light. It is found that whenever three

marks A, B, C are collinear as tested by the straight edge, and

the eye is placed so that two of them are in the same direction

(a matter of direct sensation) the third is also in that direction.

In practice we construct the two nearer marks, for accuracy,
as the intersections of crossed threads, so that if the directions

do not quite agree small discrepancies will be easily notice-

able. Thus we have a direct test of collinearity, which agrees
with the test of the straight edge whenever the latter can be

applied. We can then generalize this as a test of collinearity

and use it instead of the one based on lengths, since it is more
accurate and easily applied. Now angles between the direc-

tions of marks can be measured. Effectively the crossed

wires O in the eyepiece, a distant pair X in the instrument,

and the object mark A are placed in a line by the test of

coincidence of visual direction; another distant pair Y is

placed in line with O and the second object mark B. Then
the angle AOB is the same as the angle XOY, which can

then be measured with a protractor. The sextant is based on

a modification of this principle. The theodolite effectively

contains two protractors, and measures two angles corre-

jsi 9
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spending to the 6 and
<f>

of 7-60; is measured from the up-
ward vertical and

(f>
from a plane including the upward

vertical and the north.

In general three measured data are necessary and sufficient

to identify a position. They may be any functions of (r, 0, <f>)

or of (x, y, z) provided that neither of them is a function of

the other two. But our principle of simplicity gives reason

for regarding the Cartesian co-ordinates as the physically

fundamental ones. Our directly recognized entities are

straight lines and distances, and a plane is a notion that arises

directly out of distance. Now Cartesian co-ordinates have

the following simple features possessed by no others. Any
plane is expressed by an equation linear in the co-ordinates.

Any straight line is expressed by a pair of linear equations ;

and the co-ordinates of any point on the line are weighted
means of those of any two other points on the line. The

square of the distance between any two marks is the sum of

the squares of the differences between the co-ordinates. No

general relations of comparable simplicity hold for any other

type of co-ordinates. We regard Cartesian co-ordinates as the

physically fundamental ones on account of our principle that

the fundamental laws of physics are simple in form.



CHAPTER VIII

NEWTONIAN DYNAMICS

Nature, and Nature's laws, lay hid in night:
God said, Let Newton be ! and all was light.

POPE

8*1. Many rigid systems exist. The criterion for a rigid sys-
tem is that the distances between recognizable marks in it

do not change with the time. If one distance in a system and
all angles, as tested by optical instruments with graduated
circles, do not change with the time, we still call the system

rigid by our rules. Over considerable intervals of time most
of the objects in this room constitute a rigid system. The

angular distances between stars, as observed from the earth,

vary with the time so little that decades are required to detect

alteration even with the best measuring instruments. If then

we consider a system of lines through a given point, and each

directed towards a star, that constitutes a rigid system.
When distances change with the time we are in a new

realm, called dynamics. The marks in one rigid system may
change their distances or directions from those in another

rigid system. Thus a theodolite and the objects on the earth

within its field of view constitute one rigid system ;
the stars

and an equatorial telescope with the clockwork going con-

stitute another; but the directions of the stars change with

respect to the theodolite, and those of objects on the earth

change with respect to the equatorial.

Objects whose distances and directions with respect to a

rigid system are varying with the time are said to have motion

relative to the system. Distance and angle have so far been

considered only when they are constant for a given set of two

or three marks. But even when they vary with the time they
still exist. We can specify the position of a particle sliding

9-2
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down a curve by the mark on the curve that the particle is

passing over. We can specify the direction of a planet by

pointing an equatorial telescope towards it, and reading its

right ascension and declination on the graduated circles; or

we can photograph the region of the sky where it is, and

measure its angular distances from neighbouring fixed stars

just as we can measure the angular distances between these

stars themselves. In such a case as the ascent of a pilot bal-

loon, observed with two theodolites, we can actually observe

the directions from two positions simultaneously and deter-

mine the position of the balloon at each instant of observation

just as for a fixed object. In dynamics we are therefore dealing
with cases where distances, and those entities we have found

to depend on them, still exist, but are now functions of the

time instead of being constant.

One clearly cut distinction arises immediately. In most

rigid systems there is a continuous material connexion, trace-

able by sight and touch, between all parts. If no such con-

nexion is evident, as in a body in mid-air, or a planet, or the

components of a double star, there is in general motion rela-

tive to other rigid systems. There is therefore a strong sug-

gestion that material connexion between bodies is antagonistic

to relative motion. Even if there is relative motion to begin

with, as in the case of a body projected along the floor, it

soon stops when material contact is established. We shall not

at present examine the nature of this phenomenon ;
we merely

give it a name. The property that one body does not move

through another we call impenetrability ;
the property that

relative motion tends to cease when one body slides over

another we call friction. In dynamics, then, we refer our

measurements to some rigid system, in which the laws re-

lating measurements, whether made at the same or at different

times, are already known ;
but our subject-matter is the motion

with reference to our rigid system of a body or bodies that

are not constrained by material connexion to have no motion

with reference to it. An immediate inference is that we should
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consider in the first place those bodies that have the slightest

possible material connexion with our frame of reference
; in

this way we reduce to a minimum the interference of material

connexion with motion and remove one independent variable.

82. This condition is obviously satisfied fairly well by bodies

in mid-air, and very well by the heavenly bodies. In the

former case we take as our frame of reference axes fixed in

the earth, and find that the motion, at any rate for massive

bodies, is well represented by the differential equations

where x and y are measured horizontally and z vertically up-

wards, as judged by a plumb-line. The derived magnitude g
is nearly constant. Now by simultaneous observations of the

stars from different places on the earth's surface we find that

the direction of the plumb-line is not everywhere the same

with reference to the directions of the stars, but points nearly
to a fixed point in the earth, which we call the centre. If we
take new Cartesian co-ordinates with respect to the centre of

the earth as origin we now find that, wherever we are on the

earth's surface, the equations (i) lead to

_ _ x *y _ y z
__

z , .

~dt*~ 8 r' W g r' dt*~ g r> (2)

where r is measured from the centre of the earth. This is a

more general form than (i). It leads to a further suggestion,

that the second derivatives of the Cartesian co-ordinates

with respect to the time are of fundamental importance in

dynamics; for they are expressed by three known functions

of the co-ordinates themselves, and lead thereby to three

differential equations for these co-ordinates. We call the first

derivatives of the Cartesian co-ordinates the components of

relative velocity, and the second derivatives the components
of relative acceleration.
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821. Now consider the motion of the components of a

double star. We take an axis of x in a direction fixed with

reference to the directions of the majority of the stars, and

such that the double star is always near it. The axes of y
and z are taken in two directions perpendicular to each other

and to that of x. We observe the angles between the direction

of a component of the star and the two planes of xy and xz\

or, what is equivalent, we take the point of intersection, with

a plane plate perpendicular to the x axis, of the line joining
the centre of the object glass of the telescope to the com-

ponent. It is found that as time goes on the points given by
the two components describe similar ellipses. If we put

y/x = p y z/x = <?,
and use suffixes i and 2 for the two com-

ponents, the variations of p and q in the same interval of

time are always opposite in direction and always in the same

ratio, except for a uniform velocity shared by both com-

ponents of the star. If we proceed to the second derivatives

to remove this uniform part of the rate of change, we have

h = & M
ft &'

( j

A _ *

Further, each ratio is equal to ---
. Now p and q are

?2 ft

always small, and the displacements at right angles to the line

of sight are therefore small fractions of the whole distance.

We must choose between two alternatives with regard to the

displacements in the line of sight. If they are also small com-

pared with the distance of the star, the variation of x is small

compared with its mean value, and y and z for each com-

ponent are nearly proportional to p and q. Then

The alternative is that the displacements in the line of sight

are comparable with the distance
;
this would mean that the

orbit of every double star is enormously elongated towards

the earth, and we need not consider this possibility seriously.
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Returning to (2) now, we see that there is probably nothing

special about the line of sight and we can generalize the

equations in the form

_^._ = _.^_ = *i . *2 _ V* = *2 / x

- - -' - - -'
The components of acceleration are in the ratios of the differ-

ences of the co-ordinates
;
in other words, the accelerations of

the bodies are along the line joining them. Further, we can

choose a ratio of two quantities ml and m2 such that

m^ + m2x2
= o; m^ + m2y2

= o; m^ 4- w2#2
= o. (4)

Distant bodies appear to produce no acceleration on one

another, as is seen from the negligible or constant velocities

of most of the stars. Hence we can say that the acceleration

of each component is due to the proximity of the other com-

ponent.
Similar results are found for most of the satellites of the

planets ; they are consistent with the acceleration in each case

being directed towards the centres of the planets.

8-22. Now consider the acceleration of the moon. To a first

approximation the moon describes a circle about the earth

with radius a and angular velocity n. The acceleration in such

a path is an? towards the centre of the earth. Taking

a = 3-8 x io10
cm., n = 377/27*3 days,

we find that the acceleration is 0-273 cm./sec.
2 Now a particle

at the earth's surface has acceleration 980 cm./sec.
2

,
which is

nearly 3600 times the acceleration of the moon. The distances

are in the ratio i : 60 nearly, and therefore the accelerations

are nearly inversely as the squares of the distances.

823. These few facts relating to freely moving bodies sug-

gest the following summary :

A body has an acceleration in the direction of a neigh-

bouring body, and proportional in magnitude to the inverse

square of the distance.
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The accelerations that two bodies produce on each other

are in a ratio independent of the time.

The first of these laws can be written in the form

where (xl9yl9 z^ are the co-ordinates of the body whose ac-

celeration we want, (x2,y2 , z2) those of the other body, and /i2

is a constant of proportionality independent of the co-

ordinates and of t. The second law then implies that

where ^ is a second constant of proportionality, different in

general from /^ .

This family of differential equations can be solved exactly.

They are found to imply the following consequences :

A point with co-ordinates (x,y, z) given by

(3)

and two similar equations, moves with uniform velocity in

a straight line. We call this point the centroid of the two

particles.

Relative to this point both the bodies describe ellipses, the

ellipses being similar but having their axes in opposite direc-

tions, and the centroid being in a focus of each.

The line joining the centroid to either body sweeps out in

any interval of time an area proportional to that interval.

The mean distance a between the bodies being defined as

the mean of their greatest and least distances apart, and the

mean motion n as 2?r divided by the time of describing the

orbit, Q / \
^2 3 = ^i + /^. (4)

These results express Newton's solution of the Problem of

Two Bodies. It is found to describe accurately the motions

of double stars. Only motions at right angles to the line of
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sight being measurable*, what we actually verify is that the

movements agree with the projections of elliptic motions that

follow the laws. In other words, the behaviour of two of the

three variables determined by the solution is completely

verified; our present analysis is neither confirmed nor con-

tradicted by observations of the other variable, for these do

not exist.

When we consider the motions of satellites about their

primaries, the same solution is found to fit the relative motion,
as to the two measurable co-ordinates. Also the planet itself

shows no departure from a regular motion relative to the

stars
;
over intervals of time amounting to several periods of

revolution of the satellites the motion of the planet is sensibly

uniform. It appears therefore that the centroid of the planet

and any satellite is practically coincident with the centre of

the planet, and therefore that if fa refers to the planet and fi2

to the satellite, fa/fa is always very small and fa + /z2 is

practically fa . But for different satellites of the same planet

we get a further check; the quantity n?a* is found to be the

same for all. The constancy of n2 a* for different satellites

also therefore implies that fa is a property of the planet.

Coming now to the motions of the sun and planets, we can

observe in each case only directions as seen from the earth

with reference to the stars, except in the case of the sun, where

we can estimate the variation of its distance by measuring its

angular diameter from time to time. In this case then we can

check all three co-ordinates, and we find that the motion of

the sun relative to the earth is definitely an ellipse with the

earth in a focus. For the other planets it is found that

ellipses can always be found with the sun in a focus, such that

the radius vector relative to the sun sweeps out area at a uni-

form rate, and the direction of the planet as seen from the

earth agrees with that predicted from the various elliptic

* That is to say, in terms of the considerations of direction that we have

used so far. Velocities in the line of sight can be measured by means of

the Doppler effect, and agree with the laws, but we are not yet in a position
to discuss the theory of that effect.
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paths. It may be noticed that each elliptic orbit is specified
when six quantities are given, namely the three co-ordinates

and the three components of velocity relative to the sun at

some definite instant. With only these six adjustable para-
meters it is possible to fit an indefinitely large number of

observations of direction as the planet describes its orbit.

The alternative to supposing that the motion is actually a

Newtonian elliptic orbit is that the distance of the planet from
the earth does not follow the rules found for elliptic motion,
but that the co-ordinates are so related that the direction does

satisfy these rules. As there is no intelligible reason why this

should be true apart from the truth of the equations of motion,
we do not treat this alternative seriously.

It is now found that for each planet the quantity nza3
is

the same. As for satellites, we therefore argue that it expresses
a property of the sun, and that p, for each planet is very small

compared with its value for the sun. This can be checked

directly, since the values of /z for those planets that have

satellites are already known from observations of the motions

of the satellites relative to their primaries. Also it is found

that the value of n2 a* found for the motion of the sun relative

to the earth is the same as that found for the motions of the

other planets relative to the sun. It therefore expresses a

property of the sun rather than the earth, and we say that all

the planets, the earth included, describe elliptic orbits about

the sun. This is legitimate because the co-ordinates of the

earth relative to the sun, the directions of the axes remaining
the same, are necessarily equal and opposite to those of the

sun relative to the earth, so that if the sun describes relative

to the earth an elliptic orbit with the earth in a focus, then

the earth also describes, relative to the sun, an elliptic orbit

with the sun in a focus*.

*
Copernicus and Kepler laboured under the disadvantage of having

no accurate observations of double stars or satellites among their data.

Jupiter's greater satellites were discovered in 1609, the year of the publica-
tion of Kepler's first two laws, but their orbits are nearly circular. The
same applies to the two largest of those of Saturn. Accurate demonstration
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8-24. We have seen therefore that a body in the neighbour-
hood of a second body has an acceleration towards the second

body, inversely proportional to the square of the distance

apart, the constant of proportionality being a property of the

second body alone. What happens when there are several

bodies in the neighbourhood? We really have had the answer

already in the motions of satellites; for while a satellite is

moving about its primary it is also sharing the general motion

of the primary about the sun. If its acceleration was merely
that towards the primary, while the primary is moving about

the sun, the primary would leave the satellite behind*. The
satellite must have also an acceleration towards the sun, which

is nearly the same as that of the primary because they are at

nearly the same distance from the sun. We must therefore

generalize our law to the case where n bodies are moving in

one another's neighbourhood. We say that any one body has

an acceleration towards each of the others, whose com-

ponents are given by our law; and the total component
acceleration in any direction is the sum of the components
in that direction given by the other bodies separately.

Formally we say that if we consider the /th body,

v _ y P*m(xi- xm) . _ y fj,m (y l

- ym) .

Xi
_ _ ^ ____ ..

? y l
_ ^ TS -,

' lm ' lm

l
_

9

' lm

where the suffix m refers to another body of the system, rlm

is the distance between the bodies specified by / and m, and

the summation is for all values of m except /.

of the elliptic motion in double stars is a matter of comparatively modern
observation. If Kepler had had such data, it would not have taken him
six years to hit on the elliptic law of planetary motions. As it was, he had
to tackle directly the more difficult problem of the motions of the planets,

in which the complicating influence of the earth's motion is seen at its

worst.
* This is serious; the acceleration of the moon towards the sun, for

instance, is about twice its acceleration towards the earth.
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We notice that

r\ -
(*i
-

*m)
2 + (y i

- JO2 Jr (*,
- *), (6)

and *LZ*s-- _L = 8
_L, (7)

r*im 3*1 rlm dxm rlm
' v//

with similar relations. Then if we multiply the equations (5)

respectively by xly y ly
z

l and add, we get

The left side is a complete differential with regard to the

time. If then we integrate from time tQ to time t^ we get

where [7^
= 2^. (10)

rlm

We can also multiply (8) by /LC Z and add for all values of /.

Then the pair of particles given by / and m make a contribu-

tion to the right given by

. 3 . 9 . . 3 . 9 . 9 . . 3

since rlm is a function of (x^y^Ziy xm,ym,zm) only. It follows

that if .. ..

U = ^f^f^
J (12)rlm

where the summation is for all pairs of particles,

This is a very remarkable result. For the expression
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is the square of the resultant velocity of the particle given by
/; where we consider the positions of the particle at times t

and t + dt
y
and take the distance between them, and define

the resultant velocity as the limit of the ratio of this distance

to dt when dt becomes very small. The quantities p are

properties of the various bodies and independent of their

position. Thus the equation (13) expresses a relation between

our fundamental notions of distance and time alone, and is

independent of the particular set of axes of #, y, and z that

we choose. Further, (5) are equivalent to

.. dU .. dU .. dU

The generalization (5) makes a great improvement in our

representation of the motions within the solar system.

Kepler's laws give a good first approximation to the motions

of the planets ;
their application to the motions of the satellites

relative to the planets also gives a good first approximation.
But there are outstanding discrepancies. There are periodic

inequalities in the moon's longitude with amplitudes of the

order of a degree ;
others in the longitudes of the planets of

the order of, in extreme cases, considerable fractions of a

degree; there is a long-period disturbance of Saturn with a

period of 900 years and an amplitude of nearly a degree ;
and

in addition the elements of the orbits show slow progressive
or secular changes, the major axes in particular revolving in

one direction or the other relative to the stars. The result of

allowing for the mutual influence of every pair of bodies in

the system is that nearly all these inequalities are accounted

for. Without further modification we can account, within

the limits of observational error, for the motion of every

major planet from Venus to Neptune, all the asteroids, and

most of the satellites.

The outstanding discrepancies all concern cases where the

body whose motion we are considering is very near its

primary. This fact suggests an explanation; for we have seen
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that the acceleration of a body is always towards the body that

produces it. If the latter is remote, the lines joining the first

body to all parts of the second are nearly in the same direc-

tion. But if the bodies are fairly close together these lines are

not in the same direction, and if the second body is not

spherical its field will not be symmetrical, and the acceleration

of the first body will not necessarily be directed towards a

fixed point of the second. Such considerations do as a matter

of fact account for most of the outstanding inequalities of the

satellites. The only remaining inequality of importance con-

cerns Mercury ;
its discussion is reserved till later.

We have seen that the acceleration of any body can be con-

sidered as made up of contributions from the others, each of

which can be said to be due to another particular body in the

sense that it would be zero if the other body were not present.
If then we denote the part of the acceleration of the particle /

due to the particle m by xlm , ylm ,
ztm we have

P>l*lm + HmXml = O, CtC. (15)

We can call the terms in this equation the respective forces

of the bodies on each other, and we arrive at a result equiva-
lent to Newton's third law, that action and reaction are equal
and opposite.

The equation (15) is probably most directly verified in the

solar system by the mutual perturbations of Jupiter and Sa-

turn, and by those of the four great satellites of Jupiter. The
disturbance of the position of the sun by the attractions of the

planets affects the positions of the planets relative to it, but

cannot be disentangled explicitly. The earth and moon move
about their common centre of gravity, which moves practi-

cally like a single particle. There is therefore a monthly
oscillation of the earth's position, which is shown by a corre-

sponding variation in the apparent direction of the sun, and

gives a means of determining JJL
for the moon. But there is no

other way of finding /z for the moon from the translational

motions of bodies, so that this determination is at present
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merely an application of the principle and not a check

on it.

We may remark that there is nothing conventional about

the quantities JJL. They are perfectly definite derived magni-
A , r r , (earth's mean distance)

3

tudes. Thus a for the sun = 4?r
2 -

7 r^
'

.

(i year)
2

The notion of mass has not yet appeared explicitly.

8-3. There is one apparent inconsistency in the development

given so far. In considering the motion of a body near the

earth's surface, we referred it to an origin at the centre of the

earth and axes fixed in the earth. In considering the motions

of the bodies in the solar system we have used axes whose

directions are fixed with reference to the stars. But axes

fixed in the earth do not keep the same direction with refer-

ence to the stars, or conversely; and it is easy to see that the

equations of motion cannot keep the same form if the axes

are rotating. Thus our equations

are satisfied as they stand if

x acosajt; y = asm cot, z = o, (2)

where a and to are constants such that

co
2a3 = p. (3)

But if we take axes of (x', y', z') rotating about the z axis with

angular velocity co, the co-ordinates in the two systems are

connected by relations

x' = x cos cot + y sin cot
; y' = x sin cot + y cos wt

;

*' = *- (4)

Then x' = a, / =
o, z' = o, (5)

but in these co-ordinates the equations of motion in the form

(i) are not satisfied, for the first reduces to the impossible

f rm 2* /A\o = - a> 2 a. (6)



144 NEWTONIAN DYNAMICS

It appears therefore that we cannot retain the same form of

the equations of motion for all sets of axes in relative rotation.

If the form (i) is true for axes with directions fixed in relation

to the stars, it cannot be correct for axes fixed in relation to

the earth, and conversely. Now our study of the motions

within the solar system has been made with reference to axes

fixed with reference to the stars. If we assume this to be true

in general a modification is needed for axes fixed in the earth,

which is given in books on dynamics. It is actually found to

be small for a projectile moving near the earth's surface,

really because the time of flight is always so small that the

earth rotates through only a small angle during it. But the

correction is appreciable in long-range gunfire, and has to be

taken into account in accurate shooting. The equations there-

fore hold for axes fixed in direction in relation to the stars.

In the last resort this statement requires to be made a little

more precise; for, though the angles between the directions

of the stars are nearly constant, they are not quite so. The
stars have slow proper motions among themselves, and if we
fix the directions of our axes with regard to one pair of stars

they will vary with regard to another pair. In practice how-

ever it is found that there are an abundance of stars the

angles between whose directions remain constant as nearly as

we can observe. These are the distant stars, and we use these

as our general standards of direction. But strictly, even the

most distant stars must have accelerations on account of the

law itself, and we can never identify absolutely non-rotating
axes. This does not affect our belief in the truth of the law,

of course. The law is approximately true as a matter of ob-

servation, and fits the observations as closely as we can tell
;

given these properties, the law has a high probability because

it is simple.
The position of the origin has been left somewhat vague.

It is plain that if we take a different origin moving with a

uniform velocity with respect to the first one, the co-ordinates

are merely reduced by quantities of the form a + ut, which
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are the same for all particles. Hence quantities of the forms

x and x l xm are exactly as before. The equations of motion

are unaffected by a displacement or a uniform velocity of the

origin. This is Newton's principle of relativity. But actually
we may take a new origin moving in any way whatever. If

we do so, the quantities x
l xm , and therefore all distances,

remain unaltered ;
x may be changed, but by the same amount

for all bodies, and therefore x t xm is unchanged. The
differential equations for the differences of the co-ordinates of

the various bodies remain as before. But actually we can
never observe actual co-ordinates; all we observe are the

differences of the co-ordinates. It appears therefore, that as

far as actual tests are concerned the origin may move in any
way whatever and the equations of motion will still lead to

correct results for the quantities that we can observe.

There may, however, be advantages in having equations
of motion that are actually true, rather than such as contain

errors that can never be discovered. If we consider the point
with co-ordinates (x,y, #), which we may call the centroid of

the universe, defined by

(S/A,) # = 21^1*1, (l)

with similar equations, we have

= XpiXi = 2 (pfiim 4- pmXm i)
=

O, (2)

if the equations of motion are true as they stand. Then the

centroid moves with uniform velocity with reference to the

origin. Conversely, if our origin moves with uniform velocity

with reference to the centroid of the universe, the equations
of motion are true. We notice that if we shift the origin to

the centroid, the new co-ordinates take the form

Xi X
^p-l

__ S/xw (x l
- xm)

jsi
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Thus the equations in this form involve differences of the

co-ordinates alone.

With these co-ordinates

S/^2 = S/i^
2 + 2x Sft,*,' + S/i,*,'

8
, (4)

and the second term vanishes by (i). Also x is constant or

zero. Thus

'H-*'
1 + *i'), (5)

in which the first term is constant if we have chosen the

origin suitably.

8*4. When we come to deal with bodies that are not moving
freely we find a difference at once. The acceleration becomes

infinite when the bodies become indefinitely close if the fore-

going equations are true. Actually when two bodies come into

contact the relative acceleration disappears ;
the law of attrac-

tion undergoes serious modification at this stage*. What are

we to say about a book lying on a table? Two courses are avail-

able. The book is not in contact with the earth; we may say
that due to the earth the book has, as usual, the acceleration

downwards, but owing to the proximity of the table it has

also an acceleration g upwards, and the two cancel. Other-

wise we may just say that the acceleration is zero and leave it

at that. It is in many cases a matter of convenience which

course we adopt ;
both give the same answer as far as observ-

able phenomena are concerned. But the discussion of the

additional reactions associated with impenetrability and fric-

tion has the important feature that it brings out new physical
laws.

Consider a common balance with a fixed counterpoise in

the pan A. We place various bodies in the pan B. According
* Humpty-Dumpty would, of course, have been quite wrong had he

said that Impenetrability meant a nice knock-down argument. The im-

penetrability of the wall was what was keeping him in position in spite of

gravity ; it was when a gust of wind removed him from its range of influence

that he became a freely moving body and could be said to be knocked down.
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to our results for freely moving bodies, each of these has its

appropriate /LC,,
and each has an acceleration g downwards due

to the earth. Then in terms of equation (i) there is something
associated with the effect of the earth on each body that is

expressed by the quantity p,g. If the balance is held with the

counterpoise in place and released, the counterpoise goes
down and the pan B rises. If the experiment is repeated with

various bodies in the pan J5, some rise and others fall when
the balance is released. It appears that the effect of the

balance on some bodies is enough to overcome pg y
and in

others is not. But in each case the balance itself, with the

counterpoise, starts off from the same conditions. Thus the

operation of using the balance classifies bodies according to

their values of fjg or, since g is the same for all, according to

their values of
IJL.

We have a check on this. If we return to the problem of

the solar system and suppose that the distances between the

bodies specified by ml9 m2y m3 ,... mn are all small compared
with their distance from the body specified by /, the accelera-

tion of the last due to all together is nearly

towards the centroid of all the particles. Thus for particles

close together the effects on another body are expressible by

treating p as an additive quantity. If we place several bodies

in the pan of a balance at once, similarly, the effect of the

balance on all together is in opposition to the effects of the

earth on all together ;
and since we must measure the effect of

all on the earth by the sum of the values of
fjug y

we naturally

measure the effect of the earth on them also by the sum of

the values of pg.
It appears therefore that a balance with a standard counter-

poise provides a means of discriminating between bodies, or

combinations of bodies, according to the sums of their re-

spective //,'s; and these sums have the additive property. It

follows that the mass m of a body, determined by the balance
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as a fundamental magnitude, is proportional to the derived

magnitude /z. Being a fundamental magnitude, mass has to

be measured in terms of a unit ;
the value of /z for this unit

mass remains to be determined. We shall denote it by/, so

that fi =*fm. We can now generalize the notion of mass to

bodies too large or too inaccessible to be weighed on a balance,

by saying that it is proportional to /z, which exists in general.

Then our law 8-24 (15) relating the effects of two bodies on

each other takes the form, for any pair of masses ml and #*2 ,

nhxl2 + m^ = o.

In this form we call m$n the force on m^ due to m2 ,
and

w^ the force on m2 due to m1 . Then we have Newton's

third law in its usual form, that the forces on two bodies due

to each other are equal and opposite. We may denote them

respectively by X12 and X2i .

We have also the law that the acceleration of a body is the

sum of those due to the other bodies in the world, obtained

by adding the components in Cartesian co-ordinates. If we

simply multiply this equation by the mass of the body, we
have the rule for the composition of forces due to different

bodies, that the total force on a body is the resultant of the

forces due to the other bodies, obtained by adding their

components in Cartesian co-ordinates.

The reasons why force is interesting are then, first, that

it has the symmetrical property that action and reaction are

equal and opposite; second, that the forces acting on a body
due to other bodies are additive

; third, that when the state of

a system is known the forces are found to be determinate

functions of the co-ordinates and possibly the velocities.

Thus the equations of the form mx = X are strictly differen-

tial equations for the co-ordinates.

Strictly these results have been established only for freely

moving bodies. We proceed to extend them to bodies in

general, even when the phenomena of impenetrability and

friction arise. Their complete verification is then impossible,
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because motion in one co-ordinate is always prevented by
the connexion of the apparatus with the earth, and though
there may be a force between the apparatus and the earth we
can never measure the corresponding acceleration of the earth.

But their partial verification is easy. Consider a body of

mass ml hanging by a string of mass m2 from the pan of a

balance, the whole being at rest. The body is acted on by a

force mg downwards, which we call its weight. It has no

acceleration. Therefore the string is producing on it a force

mig upwards. If action and reaction are equal and opposite,
the body is therefore producing a downward force m^g on

the string. Also the weight of the string is tn2g, so that there

is a total downward force (ml + ^2) S acting on the string.

But the string has no acceleration and must therefore be

acted on by an upward force (m^ 4- mz) g from the balance*

Therefore the pan of the balance is subject to a downward
force (m^ + m2) g. But if we untie the string and place the

string and body in the pan of the balance the counterpoise is

undisturbed. The force on the balance pan in the two cases

is therefore the same
;
and in the second case we know directly

that it is equal to the sum of the weights of the two bodies. We
have therefore a verification of a direct inference from the laws.

8-5. Now consider a body with a plane face resting on an

inclined plane at an inclination a to the horizontal. It is subject

to a vertical acceleration g due to the earth. This is equivalent,

whatever axes are chosen, to an acceleration g cos a normally
into the plane and another g sin a down the plane. If the

body remains at rest, these must be balanced by reactions due

to the plane. Ifm is the mass of the body, there must therefore

be acting on it a force mg cos a normally and one mg sin a up
the plane. We call these the normal and frictional reactions.

The first preserves impenetrability, the second prevents slip.

But if the slope of the plane is gradually increased it is

found that at a certain inclination A the body can no longer

remain at rest, but slides down the plane. At greater inclina-



150 NEWTONIAN DYNAMICS

tions it has an acceleration g (sin a tan A cos a). The first

term corresponds to the component of gravity. The second

shows that there is a frictional reaction mg tan A cos a, acting

against the motion. There is still no normal acceleration, and

therefore the normal reaction is still mg cos a. The ratio of

the frictional reaction to the normal one is therefore tan A

when a > A and tan a when a < A. The constant A is a pro-

perty of the nature of the surfaces in contact.

But if the body is projected up the plane, or if it is projected
down the plane when a < A, it is found that the portions

mg sin a and mg tan A cos a behave differently. The former

always acts down the plane. The latter acts against the direc-

tion of motion, whatever that may be. If we take the body

by hand and slide it about the plane by applying a force

parallel to the plane, the former force is helping us when we

push the body down the plane, and opposing us when we

push it upwards. The latter is always opposing us. This

introduces us to the distinction between conservative and non-

conservative forces, which requires further elucidation.

The equation 8*24 (13), with a suitable origin, is equivalent to

In this form we may call the left side the kinetic energy of the

system, and the contribution to it from each body the kinetic

energy of that body. If we call the expression on the left

T, and that on the right C7, then however the system may
move T U remains constant. If it should happen that the

system ever gets back to its initial position, it will have its

initial kinetic energy again.

If the total force acting on any body is (X, Y, Z), and we
start from the three equations of motion of the type

mx = X, (2)

we can infer

+ * + i)T' = f'

1

(Xi + Yy + Z*) dt. (3)
J o

*

t*
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We express this in words by saying that the increase in

kinetic energy is equal to the work done on the body. If we
have a system of bodies we can add the equations of this type
for all, and say that the increase of kinetic energy of the

system is equal to the total work done on all the bodies. In

any case this applies to the actual path. But we have seen

that the forces (X, Y, Z) are determinable as functions of

the positions and velocities. However we imagine the system
to travel from its initial position to its final one, by whatever

path and at whatever rate, the integral on the right of (3)

has some value, provided we give (X, F, Z) the proper values

for a body with the co-ordinates and components of velocity

that we are considering. It happens in many cases that the

value is the same whatever path we choose, provided the

initial and final positions are the same. This is true, for in-

stance, in the motion of the bodies of the solar system. If so,

the work done is a function of the initial and final positions

only and not of the path taken. Such a system is called

conservative.

In the case of the body on the inclined plane, if we imagine
it displaced a distance s down the plane, the work done is

mgs (sin a tan A cos a). If it is then brought back to the

starting point, the force is now mg (sin a -f tan A cos a)

against the direction of motion, and the work done is

mgs (sin a + tan A cos a). Adding the two together we have

the total work done, 2mgs tan A cos a. This depends on s

and therefore on where the body has been in passing from

its initial to its final position. The system is not conservative.

It appears that the work done by non-conservative forces is

always negative. It is found also that, associated with it, there

is a change in the state of the system, which we call heating,

and can detect by direct sensation or by a thermometer.

8-6. A further refinement must be introduced at this stage.

We have proceeded so far by supposing that the position of

a real body can be expressed by three co-ordinates (x,y y z).



152 NEWTONIAN DYNAMICS

This is not actually true, because a body has finite size and

may have rotation. But in fact co-ordinates are obtained in

the process of measurement, and we must examine the

meaning of the co-ordinates we have obtained. For a planet
or a star we have not watched a particular mark on the surface ;

our result is really that there is a point within the body whose

co-ordinates do satisfy our equations. Actual marks on the

surface have additional accelerations in consequence of the

rotation, and do not satisfy the equations as they stand*. In

reality such expressions as mx have no meaning unless the

value of x can be treated as uniform throughout the region
considered. But then the region is in general only a small

portion of that occupied by the body, and we should take

into account the forces due to the other portions of the body
that surround it.

The principle actually used is that the internal reactions

between portions of a body constitute a system in equilibrium.
There seem to be several grounds given for accepting this.

If we consider any particle at (x, y, #), we can write its

equations of motion in the form

mx = X+X' 9 (i)

where X is the force on it due to external bodies and X'

that

due to other parts of the same body. If we add up these

equations for all particles we get

S mx = XX + XX'. (2)

Also from the equations of the form (i) we can obtain three

of the form

(3) :

Now if we consider any pair of particles ml and m^ ,
their

forces on each other are equal and opposite. Hence in the

* A particle at the earth's equator has an acceleration of 3-4 cm./sec.
a

towards the axis on account of rotation; the general acceleration of the

earth towards the moon is 3-4 x io~3
cm./sec.

2
.
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sum SJf the forces cancel in pairs, and the total is zero.

Also since the forces do act on both particles, they must act

along the line joining them*. Hence if the particles are at

(xvyly zj and (x^y^ #2)
we have for the forces on m1 due to /Wg,

and those on m2 due to ml are equal and opposite. Hence the

pair make a contribution to S (yZ
f

zY') equal to

teZ'-^yO-O^'-'in-o, (5)

by (4). Hence in (3) the reactions cancel in pairs and con-

tribute zero to the total.

If we accept the atomic constitution of matter and suppose
all atoms and electrons to act radially on one another this

argument is valid. It has, however, seemed premature to

many to accept it at the present stage. It is not obvious that

such an ultimate analysis of the reactions is possible.

An alternative is to say that the internal forces depend on

the body itself and not on outside agencies. Suppose then

that the external forces are zero. If then the contributions

to (2) and (3) from the internal forces were not zero, the body
would begin to move of its own accord. For rigid bodies this

does not happen, as a matter of experimental fact. But it

seems wrong to generalize this to bodies under external forces

and in a state of rotation. The internal forces are then cer-

tainly different from what they are in a stationary body under

no external force, and this procedure gives us no ground for

believing that the additional forces satisfy the rule.

It seems to me that the proper procedure is to recognize

that the principle of d'Alembert has a moderate probability

on account of the considerations on mutual influence of

particles, and to investigate its consequences. If they are

found to agree with experiment the principle becomes a

* If the particles are magnetic doublets this is not true.
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scientific law in the usual sense. Now ifwe define the centroid

of a body by the equations

(Sm) = Sm#; (I,m)y = Ilmy, (Sw)* = Sm#, (6)

it follows from d'Alembert's principle that

with two similar equations. The equations of motion that

we have used hitherto are therefore satisfied by the co-

ordinates of the centroid.

It remains to show that the centroid is actually fixed in the

body. This is usually taken for granted, but it is not obvious

that the centroid, which is so far merely a point whose co-

ordinates are defined by (6), is also always at the same

particle of the body. But if we consider the distance r
x of

the centroid from a given particle m^ at (xl9 yl9 #x) and denote

other particles by mi at fa, y t , %i) we have

(Sw) (xl
-

*)
= (Sm) #!

-

and

(Sm) rf = {^m l fa -
+ {Sm, (#!

-
*,))

2
- (9)

The square terms on the right give

r^
2

. (10)

The product terms are of the form

+ fa - z
i) fa

-
*i-)>

= 2Sw,wr rll rll , cos (/i/
7

), (n)

where by (III) we mean the angle subtended at ml by the line

joining the particles m t
and m^, and the summation is for

all pairs of particles. But in a rigid body all distances and

angles defined by pairs and triads of given particles are con-

stant. Hence every term on the right of (10) and (11) is

constant, and therefore rx is constant. Thus the centroid is

at a constant distance from any particle of the body and

therefore is fixed in the body itself.
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Now we can denote the sum of the masses of the particles

by Mt which is the mass of the body as a whole. The equa-
tions (7) now reduce to the usual form

MX = XX,

and so on. The other equations (3) can be shown, as is done

in works on dynamics, to determine the motion of a rigid

body about its centroid: that is to say, its rotation.

8-61. We have seen that the gravitational force on one body
due to another is of the formfmlm2/r\2> acting along the line

joining them. When the bodies are of finite size both the

magnitude and direction of the force are somewhat vague,
but we can make them precise also by considering the bodies

as made up of particles. If then X is the force on a particle of

mass m due to all other particles, we can write

where V =X,
where m' is the mass of another particle, r the distance be-

tween m and m'
y
and the summation is for all the other

particles. The function V has a definite value at all places

inside or outside of bodies, and is called the gravitation

potential. It can be applied to determine the quantities of the

form XX and X (yZ zY) for any body, and hence to obtain

differential equations for the motion of the body. For bodies

that have not spherical symmetry the sums X (yZ zY) do

not in general vanish, and consequently produce changes in

the rotation. This result can be checked by appeal to the

motion of the earth. The earth is not a sphere, but an oblate

spheroid. The attractions of the sun and moon on it produce

changes of the rotation of various types that can be predicted

theoretically. The axis of figure describes a cone relative to the

centroid of the earth, the axis of the cone being at right angles

to the plane of the earth's orbit about the sun. This motion
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is slow; the complete revolution takes 25,000 years. Super-

posed on it is an oscillation called a nutation, introduced by
the fact that the moon's orbit about the earth is not always in

the same plane. This causes the angular distance of the earth's

pole of figure from the pole of the ecliptic to vary in a period
of about 19 years, while the rate of its motion has a periodic
variation in the same time. All the phenomena contain the

factor (C A)/Cy where C and A are the earth's greatest and

least moments of inertia. This factor is not determinable

except from these phenomena. But the two components of the

nutation depend on the mass of the moon, and not directly on

that of the sun. The rate of the precession involves the masses

of both bodies. Thus when we have observations of the pre-
cession and nutation we can use them to determine the ratio

(C A)/C and the mass of the moon. It is found that the

mass of the moon given by this method agrees with that

found from the earth's monthly motion. Thus we have a

quantitative check on the truth of d'Alembert's principle.

8*62. The important constant / has to be determined by
direct observation of the attractive force between bodies of

known mass at the earth's surface. It is found that the

couple needed to twist a fine fibre of vitreous quartz through

any angle is proportional to that angle. A bar with two lead

spheres on the ends is suspended at its centroid from such a

wire, and the period of the oscillation of the bar as it executes

torsional oscillations is determined. The moment of inertia of

the bar being known, this gives the couple exerted by the

wire for any twist, in terms of c.g.s. units. Then the bar is

allowed to take up its equilibrium position. Two large lead

spheres are then arranged so that their attractions tend to

twist the wire, and the head of the wire is then turned round

until the torsion of the wire brings the bar back to its equili-

brium position. The amount of turn required determines the

magnitude of the attractions of the spheres and hence the

constant/.
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The equations of motion can be put into a form depending
as directly on fundamental concepts as the conservation of

energy. Suppose that the co-ordinates of a particle of a

system of mass m moving according to these equations are

(x,y,z). Then (x,y y z) are definite functions of the time.

Take any three other functions of the time (8#, 8y, 8#), re-

stricted only to be differentiate. Then the equations of

motion are equivalent to

m (x8x + ySy + z$z) = XSx -f- YSy + Z8z. (i)

Suppose these equations added for all particles of the system,
and the result integrated from time / to time t . Then

f

l

I<m(xSx+ySy+ zSz)dt= f

l

!.(X8x+ Y8y+ ZSz)dt. (2)
h* h

Now imagine the system to be moved from time tQ to ^ in

such a way that at time t the co-ordinates of the particle m
are (x + 8x

y y + Sy, z + S#). We may call x -f 8x a varied

co-ordinate and x + Sx a varied component of velocity. Then

8i = (i + 8i)-i = ^(* + 8)-J =
^8. (3)

The left side of (2) is

(x8x + y8y + z8z)\

*

But x ~ 8x = x$x = i (* + 8*)
2 - *2 - 8*2

, (5)

so that if T = 1\m (*
8 + j2 + a2

), (6)

= ST - Sw (Sx
2 + S;y

2 + Sz2
). (7)



158 NEWTONIAN DYNAMICS

If (8#, 8y, 8*) vanish at times * and tl9 so that the varied

co-ordinates begin and end at the same values as the actual

ones, the first term in (4) is zero. Then

{ST + S (XSx + Y8y + Z8z)} dt = O (8*, Sy, 84). (8)

Now the forces in the system may be conservative, so that

when the system is displaced from one position to another,

by any route, the forces do the same amount of work. Then
there is a function U depending only on the relative positions

of parts of the system, such that

L (X8* + Y8y + Z8z) = 8U + O (8#, 8y, 8*)
2

. (9)

Then finally

f
1

8 (T + U) dt = O (Sx, 8y, 8*, Si, Sy, 8^)
2

. (10)
J to

If we define a function

T+U)dt, (11)

then 85 for small variations in the path is of the second order

in those variations. This is Hamilton's principle.

If some of the particles constitute a rigid body and (8#, Sy, 8#)

are such as not to alter the distances between them, it can be

shown that d'Alembert's principle implies that the internal

forces contribute nothing to S (XSx + Y8y + Z8#). We can

therefore restrict (8# , 8y, 8#) to depend only on the transla-

tions and rotations of rigid bodies and omit the contributions

from the internal forces.



CHAPTER IX

LIGHT AND RELATIVITY

It did not last : the Devil, howling Ho !

Let Einstein be ! restored the status quo.

J. C. SQUIRE

9- 1 . We have seen that the truth of the equations of dynamical

astronomy in the form

" v.. ^l ^m
*,= - Vm~ 3

-
>

' Im

requires that the axes shall have no rotation and that the

origin shall have a uniform velocity with respect to the cen-

troid of the universe. We have also supposed that at each

instant of time each particle of the system has definite co-

ordinates with respect to these axes. With regard to the time

some further discussion is necessary. At first astronomers

thought that the time in these equations was the time of

observation. But this was found to be incorrect by Romer.
When the periods of revolution of Jupiter's satellites were

found by observation of their eclipses, transits, and occulta-

tions when Jupiter was near opposition, the results were used

to predict these phenomena when Jupiter was situated other-

wise; and errors ranging up to a quarter of an hour were

found. Romer gave the correct explanation, namely that the

time in the equations of dynamics is not the time of observa-

tion, but the time when the event under discussion actually

happened, and that in a visual observation the time of

observation is later because it takes light a finite time to

travel from the object observed to the observer. Jupiter in

opposition is nearer to us than at other times, and therefore

light takes a shorter time to travel to us. Events at that time

therefore do not suffer such a great delay in being observed

as when Jupiter is at greater distances. The delay corresponds
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to a time of passage across the earth's orbit of about 16

minutes. When the times were corrected to allow for this

effect the anomalies disappeared,
Direct measurement of the velocity of light near the earth's

surface was carried out by Fizeau and Foucault. The methods

depend on the principle of sending out an intermittent beam of

light to a distant object, where it is reflected, and observing the

time that elapses between the flashes going out and coming
back. It was found, as expected, that this time was propor-
tional to the distance traversed. With the best modern methods,
Michelson has obtained a velocity of 299,796 4 km./sec.
The experimental determinations agree with that found from
the observations of Jupiter's satellites within the uncertainty of

the latter.

When the source of light has a velocity of its own, various

possibilities arise with regard to the effect of this velocity on

the velocity of light. If light consisted of a stream of cor-

puscles, it might be expected that the velocity of the source

would be added vectorially on to the velocity of the emitted

light. But if the velocity of light is a fundamental physical

constant we might expect that when light gets away from the

source it settles down to move with its standard velocity and

forgets about its source. The velocity of light is so great that

a small alteration of it, such as the motion of the source can

introduce, would not affect observations within the solar

system, but in double stars the effect might be sensible. In

the eclipsing binary Algol, for instance, the orbital velocity

appears to be about 240 km./sec., or 0-8 x io~s of the velocity

of light. The distance of the star is about 35 parsecs or

io15 km., so that light from it ordinarily takes 3 x io9 seconds

to reach us. The effect on the time due to a change of 0-8

parts in a thousand in the velocity of light would therefore be

2*4 x io6 seconds or 26 days. The whole period of revolution

of the star is under 3 days. Thus light from the fainter com-

ponent when it is approaching us would reach us before the

light that leaves us the next time it begins to recede from us,
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and the apparent variation with time of the position of the

secondary would be completely upset*. The secondary, as it

happens, is not visible separately, being too close to the

primary, and is known to us principally from its regular

eclipsing of a portion of the primary's surface. Application of

the test to Algol may therefore be impossible ;
it is mentioned

here merely as an illustration.

9-2. This theory of the velocity of light from a moving source

has never, as a matter of fact, been taken seriously. We know
from the phenomenon of interference that light is a wave
motion. The velocity of waves is a matter of the physical

properties of the region they are traversing; once away from

the source they look after themselves.

Now consider a movingsystem consisting of a source of light,

with a mirror at distance / away from it in the direction of the

velocity. The source and the mirror are both moving with

velocity v. Then, on the natural way of looking at the matter,

light leaving the source has a velocity c and is gaining on the

mirror with relative velocity c v. Hence it will overtake

the mirror in time l/(c v). After reflexion it is moving with

velocity c again, but towards the source, and has a relative

velocity c -f v. Hence it returns to the source in time l/(c 4- v),

and the total time taken is

/ Jf_ _ zcl

c v c + v~~ c2 v 2
'

Now suppose that the direction of the mirror from the

source is at right angles to the velocity of the source. Then
after the light leaves the source, the mirror and source both

go on moving with velocity v. If t is the total time of transit

from the source to the mirror and back the source has mean-

while travelled a distance vt, and if the light on return reaches

the new position of the source it has a component of velocity

v in the direction of motion of the latter. Hence its transverse

* The data are taken, roughly, from Eddington, The Internal Constitu-

tion of the Stars, p. 209.

jsi XI
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component of velocity is (c
2 ua

)i. But the total distance

travelled transversely is zl. Hence the time taken isJ

This is shorter than the time in the former case, in the ratio

( i v*/crf. If thenwe can arrange for the two specimens of light
to leave the source at the same time and for the distances of the

two mirrors to be equal, the light that has travelled transversely
will arrive back first, and therefore in a different phase. If the

difference of phase is great enough interference will take place.

This experiment was carried out by Michelson and Morley,
and has since been repeated by various other investigators.

The two specimens of light were produced by a mirror

silvered to semitransparency and inclined at 45 to the

original beam from a lamp. Half the light went through to

the mirror in the direction of the velocity of the system ; the

other half went transversely to the other mirror. On re-

flexion to the semitransparent mirror, the latter transmitted

half of one beam and reflected half the other, the resulting

beams now travelling in the same direction. The distances

were made nearly equal. The whole apparatus was then

turned through a right angle, so that the time of transit of one

beam should be increased and that of the other diminished,

and if interference did not occur in the first case it should

occur in the second.

It was actually found that the rotation of the apparatus

through a right angle made no difference. If two waves took

the same time to travel backwards and forwards with one

setting of the apparatus, they did so again with any other

setting. The velocity of the system in this experiment was

the resultant of the velocity of the earth in its orbit and that

of the sun relative, one supposes, to the centroid of the

universe. The latter may be supposed constant; the former

is reversed every six months. It might perhaps happen that

the two cancelled in one position of the earth with respect

to the sun
;
but actually the result was the same at whatever

time of the year the experiment was carried out.
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9-21. The null result of the experiment showed that there

was something wrong with the premisses. The ratio of the

time of transmission to the distance was the same whatever

the orientation of the distance with respect to the velocity of

the system as a whole. The distances, for this purpose, are

the distances between the points of reflexion of the light, as

measured when there is no relative motion, and are therefore

to be understood as in mensuration. Distance being taken in

this sense, it appeared that the apparent velocity of light,

measured as the distance travelled divided by the total time

of passage there and back, was the same in any direction.

The expression of this result is that if (x, y, z) are the measur-

able co-ordinates, with respect to an origin, of the place where

a light-wave is at time t, then

- c

irrespective of the motion of the origin and the direction of

the axes. If then we take another origin and use analogous
variables (#', y', #', t') we shall have also

Either of these forms implies the other. If we write

ds* = c*dt* - dx2 -
dy*

- &2
;

*' 2 = c*dt'* - dx'* - dy'
2 - dz' 2

y (3)

then if either of ds and ds' is zero, the other is also zero. It

follows that for all positions and times

ds' = kds, (4)

where k may be a function of (x,y, z, t). When (x y y y z, t) are

determined, (#', y' y
z' y t') are also determinate, so that the

variables referred to one system of reference are definite

functions of those referred to the other. Thus k cannot

involve the velocities.

Now suppose that (#, y, z, t) and (#', y
f

> z', t') are both such
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systems of reference that the equations of dynamics hold with

regard to them. Then if -j- ,

-~
, -7- for a particle are constant,

i A c
dt dt

A , f dx' dy' dz'
the particle is under no forces, and therefore -^ , T̂ , -ju/ >

are also constant. Also -j- and ->-, are constant. Therefore the
at dt

two sets of equations

dx dy dz dt
-

, dx' dy' dz' dt
1

^ , ,,.and
Ts'

> d? '

-2?
' d?

= constants > (
6)

are equivalent. Now consider a particle to move from one

given position at time to another at time ^ . Then if (x,y y z)

are given as functions of J during the transit, ~r dt has a

definite value. If we choose a slightly different path, the

change of this integral is 8 JVfo. We can show that the con-

ditions (5) are just the conditions that 8 jds shall be of the

second order in the variations of (x,y y z). Thus the equations

of motion of a particle under no forces are equivalent to the

statement that 8 fds is of the second order. Similarly they

are equivalent to the statement that 8 Ids' is of the second

order. Hence if a path is such that 8 JVfc is of the second order,

so is 8 fkds.

It follows that k is constant. For if k depended on (x, y y z)

we could take a path near the original one, but always on the

side of it where k is greater than on the actual path. Then 8 fds

would be of the second order, but 8 fids would be of the

first order. If k depended on t, we could take the same path
but alter the rate of travel so that t has slightly different

values for the same (x,y, z). We could arrange for

(dx
2 + dy

2 + dz*)ldt*

to be increased when k is large and decreased when k is

small. Then we get a first order change in fkds. Thus k must
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be independent of (x,y, z, t).
It can be seen that it is unity.

For if the origin of (#', y' y #', t') has a velocity with regard to

that of (x, y, z, ),
we can turn both sets of axes of (#, y, z) y

(#', y'y z') round so that those of x and x' are in the direction

of this velocity. A bar of length / at right angles to this direc-

tion in one system has length / in the other system, and as we

go along it dx = dx' = o, dt = dt' = o, so that

/ = */, (7)

and therefore k = i . (8)

Thus

dx2 + dy
2 + dz2 - c2 dt2 = dx' 2 + dy'

2 + dz' 2- c2 dt' 2
. (9)

Also we can write

dx' _dx^_dx dx' <dyMdzM .dtdx^
ds'

~
ds

"
ds ~5x ds dy

+
ds dz

+
ds dt

' (IO)

with similar equations. Now for a particle in uniform motion

dx'/ds', dx/ds and similar expressions are constants, but

these constants are different for different particles. Hence
dx' dx' dx' dx'

t-
, v- ,

~-~
,

- are also~-~
, . , . . . . f
this can be true in general only if

^
-

, v-

constants. Therefore (x', y', z', t') are linear functions of

(x,y, z, t).

Now again take the axes in the direction of relative motion

of the origin. Then we can arrange the directions of the y'

and zf

axes so that :

If x = Vt, x' = o.}

If y = o, / = oA (n)
If z = o, z' = o.J

Hence the relations between the co-ordinates are of the form

t' =a1x + 1 + iz + ^t + e.
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Now substitute in (9). We have

02 (dx - Vdt)
2 + y*dy

2 + 82dz2

- c2 (aidx 4-

= dx2 + dy
2 + dz2 - c2dt2 . (13)

On equating coefficients of dxdy, dxdz, dydt, dzdt we have

i& = i7i
= & 8i

=
yi si

= o. (14)

Hence either c^ = 81
=

o, (15)

or A =
7i
= o. (16)

If (15) is true, the coefficients of dx* and dt* give

j8
2 =i;-j82F2 = -c2

, (17)

so that this condition cannot arise unless the relative velocity

ofthe origins is the velocity of light. The alternative (16) gives,

from the coefficients of dy
2 and dz2

,

y=i, 8 = i; (18)

and we may agree to take the axes of y' and z' so that the

positive signs are applicable. From the coefficients of dx2
,

dxdt, and dt2
,

C2
!
2 = - C2 . (19)

Eliminating j8 and V we have

(i+^^XV-iJ^ai1^1
, (20)

whence V = i + a^c
2 -

j8
2

, (21)

and from the last of (19)

0' = ^r?F- (22)

If ^' and jc are to increase in the same direction we must take

the positive sign. Similarly we shall take 8X positive. Then the

second of (19) gives ^ = _^ ^
and finally

*'=!8(*-FO; y=y; **=*; ^^^^^-J)' (24)

where j8
=

(i
- F2

/c
2
)-*, (25)
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and is an additive constant depending on the instant we
measure t' from. Ifwe choose this suitably, can be dropped.

If we solve (24) for x, y, #, t, we obtain

-<+. (26)

The equations (24) were first given in full by Sir Joseph

Larmor, who showed that a transformation of this type
leaves the form of the equations of the electromagnetic field

unaltered. In the hands of Einstein they became the basis of

the special theory of relativity.

It appears from the first of (24) that (F, o, o) is the velocity

of the origin of the second system with reference to the first,

and from the first of (26) that ( V
y o, o) is the velocity of

the origin of the first system with reference to the second.

9-22. Now consider two events specified in the first system

by (*i,:Xi> *i> *i)> (*2> 3>2 > #2> ^2) and in the second by corre-

sponding letters with accents. Then

y-yi=*yt-yi, (2)

#2
~ Zl

~ Z2
~ Zl (3)

t,'
- V =

{t,
-

tl -V(x2
-

Xl)/c*}. (4)

Hence distances perpendicular to the direction of relative

motion are the same in the two systems.

Suppose the events are simultaneous in the second system,
so that t2

' =
//. Then from (4)

*2-*i=n*2-*i)/'
2

(5)

and on substitution in (i)

If then #2 #1 *s independent of the time, x% #/ is constant

and less than x2 xl in a definite ratio. If on the other hand

t2
= tly we shall find

*k-*-(i -*"/*)*(*'-*,'). (7)
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Now when we measure a distance on a moving object we

compare the positions of the ends of the object simultaneously
with those of points with no motion relative to our axes.

The equality of t% and / is essential to the attribution of any

meaning to x% x in terms of distance when the co-

ordinates themselves are varying with time. If we have an

object whose length in the x direction in the first system is

independent of the time in the first system, then its length
in the second system is less than its length in the first in the

ratio (i v 2
/c

2
)^, and conversely. This apparent contraction

of a moving object in the direction of motion is known as the

Fitzgerald contraction, and depends, as we see from (5), on

the fact that two observers in relative motion differ in their

ideas of what events are simultaneous on account of the

finiteness of the velocity of light.

9*23. We can now identify the time of a distant event in

terms of light signals. For if a mirror is at a fixed distance /,

then light takes a time l/c to reach it, and a further time l/c

to return. Thus the time when reflexion occurs is the mean
of those when the wave leaves the source and returns to it.

This result is irrespective of the velocity of the system, and is

not true on the older theory, where the times of the outgoing
and returning waves were liable to differ, as we saw in dis-

cussing the Michelson-Morley experiment.
The chief difficulty usually felt in relation to the modern

theory of relativity is precisely in connexion with the result

that events that are simultaneous to one observer are not

simultaneous to another. But this difficulty arises in reality

at a much earlier stage than the transformation (24). If the

time means the time of observation, then the observations of

Jupiter's satellites prove that the equations of dynamics are

untrue, and conversely, if we are to retain the equations of

dynamics, the time of an event is not the time of observation.

We must therefore have a rule to enable us to infer the one

from the other, of such a character as will keep the equations
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of dynamics true. The only rule that will satisfy the criteria

that we have already is (24). The time of observation being
different from the time of the event, and depending on the

position of the observer, as a matter of observation, the whole

conception of simultaneity required rediscussion from the

start. In any case the times of different observers' observa-

tions of the same event differ by quantities of the order of

the differences of r/c, where r is the distance travelled by the

light. In the new theory we have obtained a time of the

event itself, which varies for different observers by quantities

of the order of Fr/c*. But Vfc is in general small; thus

the deviations between different observers from agreement
about time-intervals are of the second order of small

quantities instead of the first. The objection is in fact a

straining at the gnat, while swallowing the camel without

even noticing the existence of the larger animal.

9-24. Now consider a point moving with velocities (u, v, w)
with reference to the system (x, y, z

y f). Then its velocities

with reference to the system (#', y ,
z'

, t')
are

u - V_" ~
dt'

~
P(dt- Vdx/c

2
)

~
i~-uV\c

v (I)

' _ dy' _ dy v .

^v ~
d7

~
/3~p^ Vdxjc*)

=
(T^lTF/c

2
)'
W

/ w / \W =
(i-MF/cY

(3^

We notice that if (M, v, w) = (c, o, o), then (', v', w')
=

(c, o, o) whatever V may be. If (, w, w) = (o, c, o), then

(M', v', w')
= (- V, c/p, o) and

w'2
_j_ ^'2 _f_ ^'2 _ J/2 _j_ ^2 /j _ J72/^

2
)
= 2

-

These results are of course particular cases of our fundamental

rule that the velocity of light is the same however the observer

is moving.
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We notice a curious phenomenon if V should happen to

be greater than c, the velocity of light. Imagine a particle

moving with velocities (u, v
y w), and consider its velocities

with respect to an origin moving with velocity F. The quan-

tity j8 is imaginary if Vjc > i . Hence v f and w' are imaginary,
and the particle could have real co-ordinates at only one

instant
;
for the rest of time its co-ordinates are imaginary

which is as much as to say that the particle is imaginary.
There seems to be no inherent contradiction in the idea of

velocities greater than that of light : but if we consider as our

universe all particles moving with velocities less than c with

respect to ourselves, then any particle with a velocity greater
than c with respect to ourselves has a velocity greater than c

with respect to any other particle of our universe. The world

could then be classified into universes, such that no particle

in any one universe could be perceptible for more than a

fleeting instant from a different universe.

9*25. We now consider other observable consequences of the

transformation. Consider a source of light sending out waves

of period 27r/y along the axis of x. Then the disturbance at any
distance contains a factor such as

</>
= A sin y (t

-
x/c). (i)

Now consider an observer with a velocity V along the x axis.

Using (26) we have

= ,4 sin
/(>-*-'), (2)

where / =
y/? (i

-
V/c), (3)

so that the period of the disturbance reaching the observer is

longer than that estimated by a stationary observer in the

ratio $ (i V/c) : i. In practice V/c is always small and j8
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indistinguishable from unity. But the factor i V/c pro-
duces an apparent lengthening of the wave-length of a given

spectral line for a receding star, and a shortening of it for an

approaching one. This is the Doppler effect, and is measur-

able. It leads to estimates of the radial velocities in double

stars which agree with those inferred from the transverse

movements, and has many other astronomical applications.

9*26, Now suppose that an observer in the (x,y, #, t) system
sees a star in the direction

(/, m, ri).
Then the velocity com-

ponents of the light from the star are

(u,v,w) = -
(lc,mc y nc). (i)

To an observer in the (x',y
f

, %', t') system the apparent direc-

tion is
(/', m', n') and velocity components are, by 9*24,

'' ~~ k V * /
mc

Thus m'ln'
= m/n, and the directions (/, m, n) and (/', m', n')

lie in a plane including the axis of x. If

/=cos0; /' = cos0', (3)

.--i-1 l

~i+lVlc I

or, if we neglect the square of V/c,

-e= --tan0. (5)

Thus the apparent direction of the star is displaced towards

the direction of the relative motion of the second observer by
an amount given by (5). This is the phenomenon of aberration.

On account of the earth's orbital motion its velocity relative

to the sun varies in the course of a year, and therefore pro-
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duces periodic variations in the apparent directions of the

stars. These are the same for all stars in the same part of the

sky, and are well known to astronomers.

9-27. Now consider light emitted from a source and entering
water moving with velocity V in the direction of the beam.

The velocity of light relative to the water is //*, where p is

the refractive index. The velocity of the source relative to

the water is V. Using 9-24 (i) to get the velocity of the

water relative to the source, we get

u
' =

This is tested in Fizeau's experiment. Water travels in a

closed pipe so that when the light is travelling outwards to

a distant mirror the water is moving with it, and the reflected

beam travels with the return current, so that the effect of V
is to increase u' on both the outward and the return journeys.
Another beam is sent round the other way, so that its ap-

parent velocity is reduced by the motion of the water. The
two beams are recombined on return and the difference in

the times of travel measured by a method of interference. It

was found in a repetition of the experiment by Michelson

and Morley that the observed value* of the coefficient of V
was 0-442 0-02. The value calculated from the refractive

index p was 0-438; but this became 0-451 when a refinement

allowing for dispersion was made. The agreement is within

the error of observation. A further repetition by Zeeman

gave almost perfect agreement.
The result of Fizeau's experiment is extremely important.

If the velocity of light in a moving medium was the sum of

the ordinary velocity and the velocity of the medium, the

coefficient of V would have been i . If the velocity was in-

dependent of that of the medium it would have been o.

* A numerical correction due to Cunningham, Relativity and the

Electron Theory, 1920, has been used.
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The experiment excludes both of these alternatives. It shows

also that the actual coefficient agrees with that calculated

from (i) ;
and the term in i

///,*,
if we trace it back, is found to

come from the uV/c* in the denominator of 9*24 (i), which

came in turn from the term in Vxjc* in the expression for t*'.

Thus it gives a direct check on this term, which is the very
one in the fundamental transformation that has been most

subject to dispute.

93. The foregoing theory is usually known as Einstein's

special theory of relativity, though the use of the word

relativity as if it expressed a novel feature is really incorrect.

The relativity of the equations of dynamics, in the sense that

they are true whatever unaccelerated non-rotating axes we

use, had been known since Newton. The need for Einstein's

theory arose from two facts about light: first, that it has a

finite velocity, and second, that this velocity is independent
of the motion of the observer. If light had travelled with an

infinite velocity we could have identified the time of the event

with the time of observation, and there would have been no

further trouble. But this ceased to be a serious possibility

when Romer made his discovery about Jupiter's satellites;

the time in the equations of dynamics is not the time when
the observations are made. The modern problem is not the

discovery of relativity, but to retain relativity without in-

troducing inconsistency with what we know about light.

Even with the modification we have made so far, in the rela-

tions between the co-ordinates and time in different systems
of reference, the equations of dynamics lose their relativistic

form.

9-31 . Consider two bodies moving according to the equations

m^ = - m^ =fmM ^-~ **
, (i)

and so on. The co-ordinates and time are those of an un-

accelerated observer. Now imagine another observer with
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velocities (V, o, o) with reference to the first. Applying the

transformation of 9*24 we get

i ffix

dt' 1
j8 (i

-
i/F/c

2
)
3 dt*

,

V
(dyd*x_dxd*y\ ,

c*p (i
-

uV/c*)
3
\dt dt* dt dt* )

' W
with an analogous expression for da

z'/dt'*.

It is clear from these equations that in the new system
d x ii^Y

'

-J-T|- and -T-/T cannot be in a constant ratio. For in (2), u
dt 2 at a x

appears explicitly, and is different for the two bodies and

variable for both. The special theory is not relativistic when

applied to the equations of dynamics, except for unaccelerated

particles.

We may notice, however, that with ordinary velocities

ds2/c*dt
z

is nearly i, and ds' = ds. We might try then to

modify the equations by replacing djdt by cd/ds. Then

d*x' Q (d*x rrd*t\ d*y' d*y d*z' d*z

&'
=
*U? <&*/' ds^^'ds*' W*~~ds*' (5 '

But c*m =i-7 - (f) - ^ . (6)
\ds/ \dsj \dsj \ds ' v 7

dt d*t _ dx d*x dy d*y dz c

ds ds2 ds ds* ds ds* ds ds*
* (7)

Thus d^x'jds'* depends not only on the accelerations in the

original frame of reference but on the velocities, and the

velocities are variable and different for the two bodies. Hence

the values of d2
x'/ds'* for the two bodies are still not in a

constant ratio, and the equations of dynamics do not satisfy

the principle of relativity.
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9-4. We saw that the special theory depended on two

postulates: a particle moving with uniform velocity with

respect to one system of reference has uniform velocity with

respect to any other system ;
and the velocity of light is the

same in any system. We saw also that these propositions can

be expressed by saying that ds = ds', that the path of an unac-

celerated particle is specified by the equation 8 fds = o to the

first order, and that the path of a light wave is the limit of that

of a particlewhen the velocity approaches c. These have a very

general form. Now we saw that we could put the equations
of dynamics in a very general form

8 {S \m (x
2 + y

2 + *2
) + t/} dt = o, (i)

to the first order. For particles under no forces U = o. But

= c J{i
-

\ (x
2 + y

2 + *2
)/c

2 + O (<r-
4
)} rf*. (2)

Now if we do not vary the values of (#, y, #, t)
at the limits

the first term of (2) is just c (t t
)
and its variation is zero.

The second term, apart from a constant factor, leads to an

equation of the same form as (i) takes for an unaccelerated

particle. This strongly suggests that there is an analogy
between Hamilton's principle and the stationary property of

fds. If in fact we consider

f f i U }

^S m (c*dt* dx2
dy

2 dz2
)* dt>, (3)

.

J I
c

)

we have an integral that behaves in the proper way when U
is zero, and yields Hamilton's principle as an approximation,
with errors of order c~2

,
when U is variable. Alternatively,

if we introduce Vi ,
the gravitation potential at the particle

mi >
we have
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since S,Wj V\ takes each pair of particles twice. Then

(c*dtf
- dx? - dy? - dzf - zVtdtrf-, (5).

so that if we redefine ds
l by the equation

ds? = (c
2 - 2FZ) dtf - </* z

2 -
Jjy,

2 - dzf, (6)

we can sum up our present knowledge in the form

<. *u c j 8S/W|&j = o, (7)
to the first order.

j i i > v/y

Clearly an infinite number of such hypotheses would

satisfy our present data equally well
;
for all that is necessary

is that the integrand should reduce, at a great distance from

attracting bodies, to the ds of the special theory, and that near

attracting bodies the second approximation should be of the

form
}

cXmth- (x* + f + z* + 2F) dt. (8)

Any terms of order (x
2
-f y

2
-f #2

)
2
/c

4 or F2
/c

4 could be in-

cluded in the coefficient of dt without disturbing our present

knowledge.
At this stage there are two possible lines of progress. One

is that actually adopted by Einstein, which led to the general

theory of relativity. We notice that the Newtonian equations
have a form that is unaffected by a uniform velocity of the

origin, while the properties of light and freely moving par-

ticles at a distance from matter can be put in a simple form

depending only on the ds of the special theory, which is in-

dependent of the choice of origin. This property, that the

fundamental equations are independent of the velocity of the

origin (and of course the directions of the axes, so long as they
are not rotating), is of a very simple and general character,

and therefore has a moderate prior probability. Its verifica-

tion to a considerable order of accuracy by the phenomena
considered in the special theory and by the laws of Newtonian

dynamics therefore establishes a high probability that it is
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true exactly and in general. We may therefore take it as a

fundamental postulate and develop its consequences. If

these turn out to be verified its probability will approach

certainty.

The other line of attack is to begin with the observed

phenomena and find what is the simplest law that fits them.

It is found that this law has relativistic properties, and affords

justification for trying to push the principle of relativity

still further.

9-41. Starting from our recognition in the special theory of

the fundamental importance of ds, we see from (7) that there

is a possibility of retaining it in a gravitational field, provided
we modify the coefficients slightly. But if ds is to have such

an importance it must be the same for all observers, and it is

easy to see that this casts our whole scheme of Cartesian co-

ordinates and time into the melting-pot. Imagining the

coefficients to have been modified suitably, we must suppose,
as our obvious generalization from the special theory applic-
able in the absence of a gravitational field, that the motion

of particles in a gravitational field is such that fds is stationary
for small variations in the path, and that the path of a light

wave is the limit of the path of a particle when it is such that

ds = o between any two consecutive points on the path. But

in that case, since gravity appears explicitly in ds, light is

affected by gravity, light rays may be curved in a gravitational

field, and our test of collinearity among distant objects breaks

down; our laws relating distances then become approxima-
tions and do not hold exactly. We might try to save them by
saying that in a gravitational field the ds suitable for light still

has constant coefficients, so that light still travels in straight

lines, but that the form suitable for material particles does

involve the gravitational field. But at the present time this

possibility is hardly worth discussing, because we do know
that light rays are curved in a gravitational field, and there is

no justification for trying to treat light and material particles

JSI 12
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independently. The properties of distance, as exact relations,

have already been seen to need some modification when there

is relative motion in the system. For an observer may find

by trial with measuring rods that two distances along his x and

y axes are equal ; but to an observer moving along the first

observer's x axis these distances will appear different. The con-

cept of distance has a definite meaning only in the absence of

relative motion. But ds retains a definite value even when
there is relative motion. Whatwe are still entitled to say, then,

is that with reference to any observer the position of a particle

at any instant can always be specified by three variables

#1 > #2 >
X3 >

^e instant itself being specified by a fourth time-

like variable #4 . Then we may say that an event is specified by
the four variables Xly x2 ,x3l x4 . If two events happen at neigh-

bouring places at a short interval of time, we can say that ds2

is a quadratic function of the changes of the four variables,

the coefficients being functions of the variables. We write then

xt (i)

= gijdx l
dxj (ij = i, 2, 3, 4), (2)

where the ^'s are to be determined. In (2) we use the sum-

mation convention of tensor calculus, that where a suffix

such as i or; is repeated it is to be given all its possible values

in turn and the results added up. By symmetry we can take

=&.- (3)

In the absence of gravitation we can take ixt ,
uc2 ,

LX3 to be the

Cartesian co-ordinates, and #4 to be ct. Then

ll
=

g22
=

#33
=

#44
=

*> (4)

;2=i3= ... ^fti-o. (5)

In presence of gravitation the #'s will be modified. We have

one consideration from Newtonian dynamics to guide us.

The departure of the velocity of a particle from constancy

depends on the first space derivatives of the gravitation
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potential V. Far away from matter, these are zero, and the

particle moves in a straight line. If they are constant, all

particles have the same acceleration. Near other matter,

these derivatives are not zero or constant; but a function

formed from their variations from place to place, namely

is still zero outside matter, but finite inside it. Now it appears
from 9-4 (6) that the variable parts of the g^ are likely to

reduce approximately to multiples of V. Also if the gi} were

constants the relation S fds = o would imply uniform velocity.

Thus the existence of accelerations still depends on variations

of the giiy as before on variations of V\ and we look for a set

of second order differential equations that may hold outside

matter, corresponding to (6).

Einstein's procedure is to notice that the condition that a

particle shall move with uniform velocity is equivalent to the

condition that ds2
can, by a transformation of co-ordinates,

be put in form such that (4) and (5) hold. With some forms

of the original g tj
this is possible; with others it is not. When

it is possible the field is called Galilean, and the special theory
of relativity applies. The condition that it may be possible is

that a certain fourth order tensor Bk
iit depending on the gtj

and their first and second derivatives with regard to the co-

ordinates shall be zero. This on the face of it has 256 com-

ponents, but on account of various symmetry relations only
20 are actually independent. The vanishing of all components
of this tensor is the condition for the absence of a gravitational

field. Einstein looks then for a set of equations formed from

them that may persist in the neighbourhood of matter, but

outside it, and a suitable set is found to be

Ga = B'WI = o, (7)

where in accordance with the summation convention / is

given all the values i, 2, 3, 4 and the results added. Then Git

is a tensor of the second order, with the same number of
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components as the original gif , and its vanishing gives the

requisite number of differential equations for the latter. It

can be shown that if G{j vanishes in one set of co-ordinates

it does so in all, so that we can write down these equations

in any co-ordinates we may choose. Inside matter G
ti is not

zero. When the field is not varying with the time, that is, if

all derivatives of the gti
with regard to #4 are zero, Gu = o is

found to be equivalent to V2
gu = o, apart from a term in-

volving c~2
. Within matter, by analogy with Newton's law,

we may therefore say that G44 , like V 2
F, is proportional to

the density. The three components G14 ,
G24 , G34 are related

to the momentum per unit volume, and the six Gu , G12 ,
. . . G^

to the six components of stress that occur in the theory of

elasticity.

The solution of the equations has actually been carried out

completely in only one case, that where the field is sym-
metrical. In the case of the sun, for instance, we may im-

agine the time to be that of an observer on the sun, and the

direction of a particle specified by the usual angular co-

ordinates 6 and
</>.

Another co-ordinate is needed to give the

distance from the sun. Now if we imagine a short rod placed
at right angles to the radius from the sun, it subtends a small

angle, d$ say, at the sun. Its length being da, we say that the

distance r is to be given as dv/di//. Then for such small dis-

placements as make dr and dt zero, we define r by

,
ds* = - r2 (dd

z + sin2 0d<j>*)> (8)and in general
v r " v )

ds* = gn (r) dr* - r2 (d6* + sin2 6d<f>*) + gu (r) dt\ (9)

for by symmetry gn and gu must be functions of r only.

Einstein proceeds to obtain the G,7 , and finds that they can

vanish only if

), (10)

where m is seen, on comparison with Newton's theory, to be

identical with the mass of the sun.
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It is found that with this form of ds* the paths of the planets

still agree with those found from the Newtonian law within

the errors of observation, with one exception. The new law

is found to imply that the path of a planet is not exactly an

ellipse, but a slowly revolving ellipse, the direction of the

major axis turning round at a constant rate. This change is

inappreciable by observation except for the planet Mercury,
which was known to have an outstanding departure from the

Newtonian theory of just this character; and the amount
found from Einstein's theory agreed closely with that already
known to exist.

The form of a ray of light near the sun was found to be

curved, so that stars would not be seen in quite their usual

directions if the light from them to the earth passed near the

sun on the way. The amount of the deflexion was calculated,

and the amount observed at the total eclipse of the sun in

1919 and at several later eclipses agrees with it.

9*42. The theory is therefore well supported by observation,

and the general principle that the paths of particles and light

are determined by the behaviour of ds, subject to the coeffi-

cients satisfying relations of the form G^ = o outside matter,

is in a strong position. But the other point of view is not

exhausted. It can be asked, and often still is, whether any
other law than Einstein's will account for the perihelion shift

of Mercury and the displacement of star images. This ques-
tion is habitually ignored in ordinary expositions of the

theory of relativity, but it is of capital importance. It is well

known that there is matter within the orbit of Mercury, some

forming the solar corona and some reflecting the zodiacal

light. Such matter is qualitatively capable of accounting for

the perihelion movement of Mercury by its attraction, and

for the displacement of star images by its refraction. Indeed

before Einstein's theory theories were in existence that

appeared to account for the anomaly in the movement of

Mercury by the attraction of the zodiacal matter, and also for
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an anomaly that exists in the motion of the plane of the orbit

of Venus*, The latter is of course not touched by Einstein's

theory, but it is not very much larger than the probable error,

and might just possibly be due to error of observation. If

then matter existed in such quantity as to account for any

important fraction of the anomaly in the motion of Mercury
or of the displacement of star images, the remainder would

not be in accordance with Einstein's theory, which would

therefore be false. But its amount can actually be estimated

from the amount of light that it reflects, and it can be shownf
to be much too small to account for any appreciable fraction

of the observed effects. These must therefore be due to a

departure of the law of gravitation from that of Newton.

The next question is whether, given that the excess motion

of the perihelion of Mercury and the displacement of star

images are of gravitational origin, any other law than Ein-

stein's would account for them. An answer to this question
also can be given. If we return to 9*41 (10) and assume^ (r)

and 4 (r) expanded in series of powers of i/r, thus :

ft (r)=i+41 r-
1 + fl1r-+..., (i)

gt(r)
= i +A^ + 54r-

2 + ..., (2)

then the equation 8 fds = o is equivalent to

o, (3)

where I,
2 = -

ft (r) r
2- r2

(0
2 + sin2

0<
2
) + ca 4 (r). (4)

This leads by the methods of the calculus of variations to

d fdL\ dL . .

and two similar equations in 6 and
<f>.
We see easily that the

equation is satisfied if 0= \TT permanently. The < equation has

a first integral r2 sin2^-- constant. (6)

*
Jeffreys, M.N.R.A.S. 77, 1916, 112-118.

f Ibid. 80, 1919, 138-154.
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There is another first integral,

.SL *dL ,dL .

which leads to
gJL _^^ (g)

Then (6) and (8) together, with sin 9 = i
, give

r2</ 4
= constant = h. (9)

We can use this to eliminate the time from (8); we get on

r-i/, (10)

du*
,

, .4
,

c2 . .~

where ^4 is another constant.

This is equivalent to

In the actual motion of a planet u is nearly constant. We put

lu = i+ f , (13)

where ^ is small and has mean value zero. Then (12) gives

to the first order in

Now for planets more distant than Mercury A2
// is always the

same, and can be denoted by the fm of Newton's theory.

Thus -y- (
)
is sensibly constant for / greater than the mean

f*U \g4/

distance of Mercury. Thus it is equivalent to its first term,

A4 . Therefore

A4
- -

zh*/lc*
= -

2fm/c*. (16)
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Then dividing (15) by (14) we have

d/l\!*-i. +( ^f vk'

that is,
L^

(18)

For planets more distant than Mercury is of the form
e cos

(< a), where e and a are constant for each planet. If

in general is of the form e cos (p(f> a) we have

For / large p
2 ~

i, as it should be. For Mercury,

p
2 = i - 6fm/c

2
l, (20)

by observation. Substituting for p
2 and A in (19) and

equating coefficients of i// we have

Now consider a light wave coming from an infinite distance.

Then L =
o, since ds = o for two neighbouring positions of

a light wave, and therefore in(n),^4 = o. Also if at a great

distance the velocity is c along a line passing at distance a

from the centre of the sun,

h = -

Thus

(22)

(23)

If
<f>
= o when u = o (r

=
oo) and we neglect the differences

of gl and gt from unity, a solution is

au == sin <. (24)
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Then as r decreases from oo to a and increases to infinity

again <j>
increases steadily from o to IT.

According to (23)

M _ 3 (-^ifii*. (25)
.'0 (l 4

2
t/
2
)*

since u has to increase to its maximum and decrease to zero

again. Put .

au g = x. (26)
Then

(28)

Thus
<f>

increases by more than TT during the passage ;
the ray

has a curvature towards the sun. The observed deflexion is

4fm/c*a, whence >,.,,,.
and therefore At

= zfm/c
2

. (30)

From (21) now S4
= o. (31)

It follows that

Einstein's solution was

O
\ c /

r2 (dP + sin2 6d<f>*). (32)

ds* = c2 i - ^2 - i - dr* - r* (dQ* + sin2 6d<f>*),

(33)

so that all the terms in it capable of producing a perceptible

effect are directly demonstrated by the observational data.

9-5. It might appear that as Einstein's law of gravitation was

obtained as a result of his considerations of the general re-

lativity of the laws of nature, and afterwards verified by
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observation, the last discussion is of the nature of a prophecy
after the event. I think, however, that it was really rather in

the nature of an accident that Einstein's law was obtained by
his method and not by one very like that just given. The
motion of the perihelion of Mercury had been known since

Leverrier's theory of the planetary motions, and it was known
that a slight modification of Newton's law of gravitation
would account for it. The only one actually suggested was that

of Asaph Hall, in which the index in the law was made slightly

different from 2. If the simplicity postulate had been ex-

plicitly stated at that time it would have been recognized that

a law with an index slightly different from an integer is in

reality an extraordinarily complicated one, and has therefore

so small a prior probability that it does not merit serious con-

sideration. The alternative that should have been tried was

to include in the gravitational force terms varying inversely as

the third and fourth powers of the distance, and to choose

the coefficients so as to account for the facts. It would then

have been found that the ratio of the coefficient of the third

power to that of the second was of the order offm/c
2

;
and a

direct relation between gravitation and light would have been

indicated. Such a relation had been tentatively suggested by
Newton himself and by Laplace. The curvature of light rays

passing near the sun had indeed been predicted by Newton.

His suggestion had been forgotten; but a discovery of this

sort would certainly have revived interest in it and led to an

experimental test. It would then have been found that the

deflexion was twice what he predicted, and it would have been

seen that a more drastic revision of Newton's law was neces-

sary than the mere addition of a cube term to the gravitational

acceleration. In that case every essential of Einstein's law

would have been obtained before his theory was created, and

his result would have been merely a mathematical description
of facts already known. Of course the fact that Einstein was

able to construct his theory without such previous con-

siderations is an additional reason for admiring Einstein.
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It might be said that in inferring the law of gravitation

from the empirical facts we have gratuitously assumed that

the departures from the Newtonian law arise from the terms

of the lowest orders in the *s that are not considered in the

first approximation. But if they arose from later terms extra-

ordinarily large numerical coefficients would be needed, which

again are excluded by the simplicity postulate.

9-6. There is no antagonism between the principle of rela-

tivity and the simplicity postulate; indeed the principle is

itself a thoroughgoing application of the postulate. The

simplest possible relation between two quantities is that they
are independent; that is, that when one changes there is no

associated change in the other. When there is an associated

change we may either study it directly, or try to construct a

new quantity that does not change. In Newtonian dynamics,
for instance, the velocities of the bodies in a system change
with time. We can proceed to find new quantities, the

momenta of the system, which do not change with time. We
may deal with the kinetic energy either by saying that

change of kinetic energy = work done,

or we can reverse the sign of the work and introduce an

apparently new concept, the potential energy, and say that

kinetic energy + potential energy = constant.

Actually this procedure is of doubtful legitimacy, because

the work done may depend on the mode of passage from the

initial to the final state, in the case of non-conservative forces,

and then the existence of potential energy as a function of the

state of the system is problematical. It is found, however, that

the operation of non-conservative forces involves the genera-
tion of heat, and that there is a relation between the work

done by these forces and the amount of heat produced. A new
kind of energy, heat energy, is then invented, and we say that

kinetic energy + potential energy of conservative forces

+ heat energy = constant.
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So we proceed, inventing new kinds of energy so as to keep
the principle of conservation of energy true. It is actually

found at each stage that the new kinds of energy have definite

properties of their own that warrant their being regarded as

physical Concepts. In modern molecular physics heat energy
itself has come to be regarded as kinetic and potential energy
of agitation of the molecules, thus making it possible to

regard all forces in the last resort as conservative; the dis-

tinction is then between large-scale or molar motion that we
can observe in dynamical experiments, and small-scale or

molecular motion that is not directly observable as motion,
but can be detected either by the sensation of heat or by the

production of thermal expansion. In all stages we detect the

operation of a prior probability that something is constant,

and that our problem is to find out what it is.

But the conservation of energy and momentum does not

comprise the whole of dynamics. To find the actual relative

motion of the parts of a system we still need the equations
of motion, or their equivalent, Hamilton's principle; and

these imply the conservation of energy and momentum but

are not implied by them. We prefer Hamilton's principle to

the equations of motion because it is expressible directly in

terms of the ultimate ideas of distance and time, whereas the

equations of motion, apparently at least, involve the co-

ordinate system. Hamilton's principle is not a conservation

principle ;
the essence of it is that the integral involved in it is

not stationary if the path we begin with is anything but a

dynamically possible path. But we do notice in it that the

statement is independent of the system of co-ordinates
;
and it

is this fact, applicable to the whole well-verified region of

Newtonian dynamics, that is the basis of the belief that the

ultimate laws of nature can be stated in a form independent
of the co-ordinate system. By the simplicity postulate we are

therefore entitled to say with a high probability that this prin-

ciple is true in general. But this principle is precisely the

principle of general relativity. The special theory of relativity
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enables us to extend this to the motion of light, without dis-

turbing it for material particles outside of a gravitational

field, only an ultimate physical constant, the free velocity of

light, appearing. But in the special theory it turns out that

dynamical time is on a very similar footing to the three posi-

tion co-ordinates, and the principle of relativity has to be

extended to allow the system of reference to include four

variables, three position co-ordinates and the time, which

can then be transformed freely for systems of reference in

motion relative to each other. Incidentally it turns out that

there are not two fundamental ideas, distance and time, but

one fundamental idea, ds\ and that the coefficients in ds*

in the general theory satisfy differential equations that have

the same form in any transformation, just as the gravitation

potential of Newtonian dynamics satisfies a differential equa-
tion that is not affected by changes of axes.

It must be said that in spite of the high probability we can

now attach to the principle of general relativity, it is still on

its trial. It is really verified so far only in the motion of a

body or light ray of negligible mass in a symmetrical field.

The obvious generalization to a system of many particles

would be to attribute a mass and a ds to each, and to say
that S lm l

ds
l
is stationary. But a deeper analysis appears to

be necessary, and the application of the principle to even the

problem of two bodies has not yet been carried out, on

account of the mathematical difficulties.

A further problem concerns the size of the universe. The
coefficient g& outside a spherical body, we have seen, is

cz (i zfm/c^r). If the universe has density p and radius a
y
then

just outside it gu will be c2 (i $Trfpa
2
/c

2
). This is negative

if pa
2 exceeds a certain value, and the corresponding local

velocity of light is imaginary. There is thus a definite upper
limit to the size that the universe can have if its mean density

is given; and there is a lower limit to its size if its total mass

is given. Various solutions of the problem have been attempt-

ed, but there is so far no definite answer.
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The chief outstanding problem, however, is in relation to

electricity and magnetism. It was shown by Lorentz and

Larmor that the equations satisfied by the electric and mag-
netic forces satisfy the special theory of relativity, and

numerous electrical experiments designed to detect absolute

velocity led to null results. But light waves are electro-

magnetic in character, and are now known to be affected by

gravitation. Thus gravitation and electromagnetic phenomena
interact, and the question is, do the laws of this interaction

satisfy the general theory of relativity? The question really

presupposes a condition analogous to the classical
"
First

catch your hare ". We cannot test these laws experimentally
until they have been produced, and although several experts

have produced theories they do not seem to have satisfied

one another.

The general theory of relativity is therefore justified as a

physical law up to a certain point, and the simplicity postulate

entitles us to extend it further, if possible. This extension is

a matter for the future and for further experimental in-

vestigation.



CHAPTER X

MISCELLANEOUS QUESTIONS

"How is bread made?"
"

I know that\" Alice cried eagerly.
" You take some flour

"

"Where do you pick the flower?" the White Queen asked. "In a

garden, or in the hedges?"
"Well, it isn't picked at all", Alice explained; "it's ground

"

"How many acres of ground?" said the White Queen. "You mustn't
leave out so many things,"

LEWIS CARROLL, Through the Looking Glass

This chapter is devoted to a number of incidental considera-

tions that have so far escaped attention.

1(M. Is there a non-quantitative simplicity postulate? Let us

consider such a biological proposition as the following.

All animals with feathers have beaks, two legs, two wings, and

warm blood.

We might try to analyse this as a proposition in sampling.

"Being an animal with feathers" would then be the property
a of a class, m members of which have been observed*

"Having a beak" is taken as the property b possessed by / of

the observed members. Then according to Laplace's theory
of sampling the probability that the next member examined

has the property b is
;
and if all the observed membersr r J m + 2

have had the property, so that / = m, the probability that the

whole class, of number n say, has the property b is
n T- i

This result, in relation to the proposition under considera-

tion, seems to be at variance with general opinion. I have

observed a large number of animals with feathers, but I

suppose that they constitute less than i in 10,000 of the

animals with feathers in England. According to Laplace's

theory, then, (m + i)/(n + i) is under 7^^, and the prob-
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ability that I should attribute, on the data, to the proposition
that all such animals in England have beaks does not exceed

this trivial fraction. Actually I seem to attribute to it a prob-

ability approaching certainty. The same is, I believe, the

position of most ornithologists. Our problem is to consider

the reason for this great departure from Laplace's theory.

It might be thought that since
"
animal with feathers" is

so widely recognized a concept as to have had the name bird

associated with it, and as such to have been mentioned in

literature on countless occasions, the information provided

by other people contributes largely to one's estimate of the

probability. If such a concept is generally recognized, a
4 *

bird" without a beak would attract attention and be com-

mented on, and the absence of comment gives some ground
for supposing that nobody has seen such a thing. In this

particular proposition such considerations certainly carry

weight ;
but I do not consider them the ultimate reason. In

the first place, other people's judgments are not known to me

directly ;
the things that I know directly about other people are

their appearance and the sensations ofsound that they produce,

and the appearance of the marks they make on paper. When
I attribute to their sounds and writings meanings similar to

those I express when I make similar sounds and marks myself,

I am making an inference. It seems to me that such an in-

ference must rest again on observed similarities between other

people's behaviour and my own, which are generalized as

part of the science of psychology, and depend for their

acceptance as general propositions on a theory of sampling.

I have not examined a large fraction of the inhabitants of

England to find out whether they do seem to attribute the

same meanings to propositions that I do, and when I assume

that those I have not examined do so I am making an infer-

ence, which on Laplace's theory would itself have as small a

probability as the proposition about birds. The introduction

of testimony therefore only shifts the issue without affecting

its ultimate nature.
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The situation occurs, indeed, when no question of testi-

mony arises. A botanist finds a plant that does not fit any

description already recorded. He immediately calls it a new

species, and publishes a description of it ; that is, a new con-

cept is created on the basis of a single observed instance.

There is no question of anybody else having observed the

same species. But we notice that one property does not make
a species. If a botanist found, for instance, a plant agreeing
in all particulars with the descriptions of the upright butter-

cup, but possessing no petals, he would not publish a de-

scription of a new species, Ranunculus apetalus. He would
call it a specimen of Ranunculus acer without petals*. The
mere possession of one unusual property does not constitute

a new species, but merely a freak. There must be a conjunc-
tion of several new properties, and then it is expected that

some at any rate of these will always be associated in future

instances. It is utility for purposes of prediction here, as in

quantitative laws, that coincides with the introduction of a

new concept. The principle seems to be that if an object of a

given class has r properties a, h, c, ... k, then there is a finite

prior probability that all future members of the class with

any r i of these properties will also have the remaining one.

This probability is a moderate number, independent of n

the number of members of the class with r i of the pro-

perties in the world. If it was merely i/n y
we should be back

to Laplace's theory ;
and we seem to have reached again the

principle that Laplace's assessment of the prior probability

is wrong for the extreme cases where all or none of the

members in the world have the property under discussion.

But if the prior probability is moderate, say J, whatever n is,

it appears that repeated verifications will make the probability

of the law approach certainty, as for quantitative laws. Then
we have a simplicity postulate applicable to non-quantitative

laws.

* Unless he forgot his acer, acris, acre and called it Ranunculus

acris.

jsi 13
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We may hazard a solution of this question by considering
the prior probability that a point may lie within a given
interval on a line. If the line is infinite in length both ways,
so that there is nothing to distinguish one interval from

.another, the prior probability is uniformly distributed and

the probability that the point lies in a given interval is pro-

portional to the length of the interval. Strictly this makes the

probability that it may lie in any finite interval infinitesimal,

but we need consider only the ratios of the probabilities for

different intervals, which are perfectly definite; and when
measures are introduced factors such as e~h

*x* enter into

the inverse probability and make the posterior probabilities

definite. If the point is restricted only to lie to the right of a

given origin on the line, and we have no previous knowledge
about its distance x from that origin, the prior probability
that it lies in a short interval dx is proportional to dx/x ;

for

with any other law the probability that it lies between x and

2x would depend on #, and therefore there would be a

previous criterion suggesting a scale of distance. Now suppose
jhat we know initially that x lies between o and i. The prior

probability that it lies in a range dx must be symmetrically
distributed about the centre of the range, so that it must be

of the form/ {x (i x)} dx. But when x is small the influence

of variable distance from i must be inappreciable, and there-

fore when x is small

f{x (i x)} oc i/x.

But in this region/ {x (i x)} is nearly/ (#), and the required

law is therefore that the prior probability that x is in a range

dx is proportional to dx/x (i x) ;
and integrating this we see

that the prior probability that it lies between a and b (b > a)

is proportional to log , log . The fact that thisrr i i a

tends to infinity when b tends to i or a to o is not really

serious, because in actual measures the extreme values are

usually excluded by the limits of error. Now this suggests a
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form of the prior probability in the theory of sampling. We
are given there that a ratio x = r/n is at least o and at most i.

Then the prior probability of a given value of r may be taken

as proportional to 2

x(i x)

~~

r(n r)'

Thus the/ (r) of the theory of sampling should be taken to be

inversely proportional to r (n r). This makes / (r) tend to

infinity at the extreme values
; but as before this is not serious,

for so long as the sample is homogeneous the extreme values

are still admissible, and we do attach a high probability to the

proposition that the whole class is of one type ;
while as soon

as any exceptions are known the extreme values are com-

pletely excluded and no infinity arises. Such a form of /(r)
seems therefore to be just what is needed to provide a

simplicity postulate for non-quantitative laws.

It may happen that an observed new conjunction of

properties breaks down in further instances. This is precisely
the case where the botanist cannot find permanently associated

characters to describe his species properly, and occurs in such
"
difficult

"
genera as Rosa and Hieracium. From our point of

view these are instances of suggested laws, with finite prior

probabilities, that have broken down under crucial tests.

It appears that such a principle is of great importance in

the theory of our knowledge of the world, and that the validity

of even the concept of objects itself depends on it.

If we return to the notion of a bird now, we see that

feather really expresses in itself the conjunction of numerous

properties. A feather has a central horny quill, fringed by
numerous filamentous hairs so arranged as to lie side by
side nearly in a plane, and so that their ends lie on a smooth

curve. It is this conjunction of properties that justifies the

introduction of the concept and the attachment of a definite

name to it. Similarly beak implies a horny projection on the

face, carrying with it a mouth and nostrils; again several

properties, are associated. The observed usual conjunction of

13-2
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the two sets of properties, and also those of two legs, two

wings, and warm blood, warrants the inference that the con-

junction holds in general and therefore the introduction of

the concept bird.

It happens that, so far as our knowledge goes, all animals

with feathers have the other properties mentioned; the con-

verse is not true. Thus the duck-billed platypus has a beak

and warm blood, but has not feathers and has four legs and

no wings ;
man has two legs and warm blood, but not a beak

or feathers. What if there were no single defining property ;

if, that is, there were animals with a beak, two legs, two wings,
and warm blood, but covered with hair instead of feathers?

Should we then have to abandon the notion of bird? I think

not. We should call the new creatures birds with hair, just

as we call the duck-billed platypus a mammal with a beak
;
or

else we should retain the definition in terms of feathers and

deny that the new creatures are birds at all. There would

probably be a vigorous discussion in the zoological journals
as to which course was the correct one, but in any case the

decision is a matter of convention, like the assignment of a

name to the concept in the first instance. The important thing
is the observed usual conjunction of the properties, upon
which we base the inference that the properties are likely to

be associated in future instances. The existence of an occa-

sional exception does not disprove the rule
;
it merely suggests

new lines of inquiry. The concept is merely a way of express-

ing the rule concisely.

After the above passage had been written I came upon the

following, in a paper by Dr A. Wohlgemuth*.
"The point has been admirably stated by Freud's col-

league, Joseph Breuer :

"'All too easily one gets into the habit of thought of as-

suming behind a substantive a substance, of gradually under-

standing by consciousness an entity. If then one has got used

to employing local relations metaphorically as, e.g., subcon-

*
J. Medical Psychology, 5, 1925, 105.
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scious, as time goes on an idea will gradually develop in

which the metaphor has been forgotten, and which is as

easily manipulated as a material thing. Then mythology is

complete.'
"Breuer recognized the slippery slope down which Freud

rushed away from scientific fact, and called a warning halt,

but, alas, too late."

With the statement of psychological fact that we do get
into the habit of assuming a substance, or, as I prefer to say,

a concept, behind observed conjunctions of properties, and

that the concept comes to be manipulated as directly and

easily as a material thing, I am in complete agreement. From
the statements of opinion by the two authors quoted that this

occurs too easily and that it constitutes a means of rushing

away from scientific fact, I dissent completely. These opinions
are a direct negation of the whole of the scientific procedure
of constructing concepts, and there would be no such thing
as science, or, indeed, as everyday knowledge, if they were

accepted. It is precisely the utility of concepts in sum-

marizing existing knowledge that makes it possible to keep
scientific facts classified and accessible, and therefore to make

progress as new laws are discovered. The existence of dy-

namics, for instance, depends first on abstracting the concepts
of physical objects and events from sensations; then on the

concepts of intervals of time and distance, derived from events

and objects; then on those of mass and force, derived from

the observed relations between distances at different times.

At each stage the concept gets further away from the original

facts
;
but at each stage also it makes it possible to infer more

facts. The double aspect of the construction of concepts is

not antagonistic to scientific method, but on the contrary is

the very essence of it.

10-2. Ultimate concepts. In the development of knowledge
our fundamental data are sensations and certain a priori prin-

ciples of logic and probability, and as we proceed we construct



198 MISCELLANEOUS QUESTIONS

concepts of increasing generality from them. Is there any
reason to suppose that the process will ever stop? If so, the

concepts reached at this final stage may be called ultimate

concepts. It has happened that for ages certain concepts
have been thought ultimate, but are now proving to be express-
ible in terms of more general ones. Thus distance and time,

which were long thought to be ultimate and absolutely general,

are found to be approximations involving a certain amount of

ambiguity, the more general concept behind them being the

ds of the theory of relativity. The physical object itself, with

its characteristic dynamical property of impenetrability, is no

longer a continuous piece of
"
matter" occupying a definite

region of space. It lost that status when Dalton showed that

the simple numerical relations that arise in the laws of

chemical combination could be explained if matter consisted

of molecules, each molecule of a definite substance consisting

of a finite number of atoms, the total number of kinds of

atoms being finite. It followed at once that a piece of a

chemical compound could not be, in the last resort, a region
of space with the same properties at all points. The molecular

theory led further, in the hands of Waterston, Boltzmann,

Maxwell, and others, to mechanical explanations of Boyle's

and Charles's laws in gases, and the viscosity, diffusion, and

thermal conductivity of gases. In modern physics, experi-

ment in rarefied gases reaches directly not only the molecule,

but the atom; and even the atom proves to have properties

explicable on the hypothesis that it is made up of only two

kinds of entity, the proton, positive nucleus or hydrogen ion,

carrying a positive charge, and the electron, carrying an equal

negative charge. Application of this notion of the ultimate

constitution of matter to solid crystals has led W. H. and

W. L. Bragg to explanations of their behaviour in reflecting

X-rays, and Max Born and J. E. Lennard-Jones to quantitative

explanations of their elastic, optical, and electrical properties.

The principle that matter is made up of protons and electrons

is therefore in a strong position. But the impenetrability of
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matter has lost its generality. In a gas under ordinary con-

ditions the region actually occupied by the molecules is under

a thousandth of that of the whole ; even in a solid the protons
and electrons do not occupy more than an exiguous fraction

of the whole region within the apparent outer surface. We
cannot as a matter of fact push one piece of matter through
another without meeting a resistance; but this resistance is

explained by the theory. Further, electrons can be made to

pass right through films or plates of solids, finding their way
between the constituent protons and electrons.

These modern views on the constitution of matter did not

lead directly to the abandonment of the idea of a physical

object as an ultimate reality, but rather to the attitude that

the object, as usually understood, is composed of smaller

things, which are still objects; that is, like the physical object

before the time of Dalton, they have definite positions at any
time, and no two of them can occupy the same region. But

even this position is being assailed by the new quantum
mechanics. According to Heisenberg's uncertainty principle,

which is a simple consequence of any quantum theory, it is

never possible to measure the position and velocity of a

particle accurately at the same time
; whichever of them we try

to measure, the process affects the other, and an indeterminacy
remains in both. Relativity has left us thinking that an event

can be specified by stating exact values of four variables, three

position co-orcUnates and the time. Heisenberg leaves us in

doubt as to whether these variables can have any exact values

at all
;
and if the position of a particle is indefinite it becomes

doubtful whether the statement that two particles cannot be

in the same position has any meaning.
In the various forms of the new quantum mechanics the

four variables needed to specify the time and the position of

any particle have ceased to be physical magnitudes at all
;
a

single numerical measure is not enough to specify any one of

them. In Heisenberg's theory each is replaced by a matrix,

an assemblage of several magnitudes; in that of Dirac the
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co-ordinates and the corresponding momenta are what he

calls j-numbers, which do not satisfy the ordinary rule of

multiplication pq = qp. In the theory of Schrodinger an

entirely new variable, the wave-function ^, appears, which

satisfies a certain differential equation, and the observed

phenomena of electron emission, radiation, and so on emerge
as expressions of the properties of the wave function. All

three theories appear to give the same answers, and to be well

confirmed by experiment. But all agree in that the ultimate

particles do not have definite co-ordinates at any instant.

The proton and the electron, as particles with definite posi-

tions, have disappeared. Whereas on the older quantum theory
a hydrogen atom consisted of one proton with one electron

moving in a definite orbit about it, on the new theories the

proton and electron have lost their individuality and can only
be said each to fill the whole region occupied by the atom.

As we cannot observe the positions of the electron at various

points of its alleged orbit, and should certainly alter the

orbit if we tried, there is no experimental objection to this

view. It is only when the electron emerges from an atom

and travels freely that it behaves as an individual, and

in these conditions the new theories describe its actual

behaviour.

On Schrodinger's theory the co-ordinates appear explicitly

in the differential equation, though the electron as a thing
with definite co-ordinates has disappeared. Thus the notion

of position in space remains though nothing has a definite

position. This situation is somewhat paradoxical, and an

attempt has been made to overcome it by constructing from

^ a real function, which is said to represent the probability

that a given position is occupied at a given time. Thus we
have to speak in our ordinary sense of the probability of

Schrodinger's differential equation as a scientific law, and

yet the equation itself deals with probability. We are in the

position of having to speak of the probability of a law of

probability. The complication is not really a new one, because



MISCELLANEOUS QUESTIONS 2OI

it arises in the treatment of the law of error when the standard

error has to be determined from the observations. In that

case we have had to speak of the prior probabilities of dif-

ferent standard errors, that is, of different laws of error, where

each law is itself a statement about the distribution of prob-

ability among different possible values of the error. Perhaps,
in addition to the a priori laws of probability that underlie all

inference, there are other laws of probability that have to be

found as far as possible from experience and therefore have

probabilities themselves.

The question does not arise in the theories of Heisenberg
and Dirac, for the co-ordinates in them are not single real

magnitudes. The position has just the same degree of in-

definiteness as the particle that is said to occupy it*. This

consideration, combined with the formal simplicity of Dirac's

theory, seems to place it in the best position of the three.

But the formal simplicity of Dirac's laws does not always
make it easy to solve his equations in special cases, and it is

often found that the solution of his equations is most easily

obtained by Schrodinger's method. This is really because

Schrodinger's method uses only ordinary mathematics, while

Dirac's numbers that do not satisfy the commutative law of

multiplication require the construction of a new branch of

mathematics, which is not yet fully carried out.

The existence of three such theories, all giving results in

agreement with the facts, but formally quite different, leaves

us in considerable doubt about ultimate concepts. A fruitful

source of philosophical discussion is the reality of scientific

concepts. So far as I can see what is usually meant by this

is the existence or otherwise of atoms, electrons, light waves,

and so on as ultimate realities in the same sense as physical

objects appeared to be ultimate realities to the eighteenth-

century physicist. The answer to this seems to be definitely

in the negative ;
but the question is replaced by that of the

* The indefiniteness is much like that in the statement that the equation

(x~ 3)
2+ IF ~ has roots near #=3, though actually there is no real root.
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reality of co-ordinates, momenta, and wave-functions. It

seems to me that this question may well be postponed till

we have made more progress with the various new quantum
theories, particularly in the direction of co-ordinating them

with the general theory of relativity. In any case the concepts
that appear explicitly in the theories are quite different in

character from physical objects. From the standpoint of

scientific method the one and only test of the validity of con-

cepts is whether the laws they are supposed to satisfy explain

our sensations
;
whether this is also a ground for attributing

philosophical reality to them is a different question.

10-21. The question of ultimate concepts arises again in

such biological questions as the materialistic interpretation of

physiology and the physiological interpretation of psycho-

logy. Modern research has shown that many physiological

processes satisfy quantitative laws like those of physics
and chemistry, and in many cases that these processes can

actually be interpreted in terms of physics and chemistry.
Are we justified in inferring that all physiology is reducible

to physics and chemistry? It must be remembered that when
the question was formulated the atom was considered an

ultimate reality ;
the result of modern developments in physics

is that we are asking whether physiological processes can be

explained in terms of ^-numbers or 0-functions. The alter-

native is that there is a non-physical concept, which we call

life, and which may be ultimate. The problem of materialism

is to explain life. Life as it stands is a valid scientific concept
because it explains observed phenomena; a live animal has

different properties from a dead one. That is not to say that

it is an ultimate concept. There seem to me to be two relevant

indications, pointing in opposite directions. The growth of

green plants involves the interaction of carbon dioxide and

water to produce sugar or starch and oxygen, a reaction re-

quiring the absorption of energy, which the plant obtains

from the sun's radiation. Carbon dioxide and water are
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ordinarily stable in each other's presence; the plant must

apparently have some directing ability, applying the solar

energy in just such a way as to upset this stability. The same

applies to the obscure organisms that derive their energy
from chemical reactions without the presence of light, re-

actions that do not take place spontaneously, but only under

the influence of the plant itself. On the other hand, if or-

ganisms have a directing power, of molecular fineness, as

this would suggest, they might apply it to the sorting out of

molecules according to their velocities. Then they could

upset the second law of thermodynamics and provide for

themselves all the available energy they need. This does

not appear to happen; physiological processes in animals

and plants appear to follow the second law of thermodyna-
mics. The hypothesis that life is not an ultimate concept
remains untested.

10-22. Our primary data being sensations, it may be said

that the aim of science is to account for sensations in terms

of ultimate concepts and their properties. On the materialist

theory these ultimate concepts are those of physics and no

others. The physiological interpretation of psychology does

not go so far as this, but states that psychological phenomena
can or will be reduced to physiology. The experimental study
of sensation has gone some way in the explanation of the

transmission of sensations to the brain, but little has been done

towards understanding what happens to them when they get

there. The opinion that the amazing complexity of mental

processes, including recognition of sensations, emotions,

reasoning, and volition, can be reduced to physiological pro-

cesses, is hypothesis ;
it may be true or not, but it is certainly

at present pure unverified hypothesis. Further, all the

mental processes just mentioned have in common the fact

that they involve, to varying degrees, conscious criticism.

This is directly recognized and therefore is a fundamental

concept. One way of studying it is to examine mental
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behaviour when it is removed as far as possible, and to see

what differences arise.

It is therefore a legitimate procedure to study mental be-

haviour when conscious criticism is, as far as possible,

eliminated. The absence of criticism is best realized in dreams

and in the psychoanalytic situation, where the patient, as a

regular matter of technique, says everything that comes into

his mind without criticism. The results are not chaotic
; they

are found to arrange themselves according to perfectly
definite rules of resemblance, which are scientific laws. They
differ from the rules of conscious criticism, the function of

which is to observe and study them
;
and they are found to

be closely related to the forgotten experiences of childhood

and the pitiless logic, based on incomplete data, of the enfant

terrible and the child at still earlier ages. The result is the

discovery of a whole region of mental activity, with laws

of its own, and demanding new concepts to express them.

Freud's Unconscious is the general name for this region ;
for

details of its structure reference must be made to the special

literature of the subject*.

The results of psychoanalysis have been criticized on

various grounds, which seem to me to merit discussion here

because they involve points of principle applicable to any
science. One line of attack is simply to deny the facts as dis-

covered, or the truth of the relations found between them.

This is merely a matter of refusal to investigate, and does not

impress the analyst who is dealing with the material every

day, or the patient who has been cured of various mental

disorders, ranging from minor anxieties to phobias or dis-

abling neuroses, by being enabled to understand his own
mental processes better.

A more subtle attack is to say that psychological processes
are really the expressions of physiological ones, and that the

solution of the problems investigated must come ultimately

from physiology. This may be true. But to use it as a basis

* See especially Freud, The Ego and the Id.
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of procedure is not legitimate, because it assumes from the

start that there are no ultimate mental concepts, or, what is

the same thing, it takes for granted that there are relations

that completely determine the phenomena of conscious mental

activity in terms of those of physiology before we know what

they are. Instead of inferring the laws from the data, the

invariable scientific procedure, it begins with unstated laws

and treats the data as a ground for optimism about the future.

The situation is the same as if an engineer in process of

designing a bridge was told that he should not attend to

experimental evidence about the strength of his materials

because all phenomena of elastic fatigue, like other elastic

phenomena, may some day be explained in terms of modern
atomic and quantum theory. It may be so

;
but he wants to

get the bridge built.

It has also been said that the phenomena are not quanti-

tative and therefore not scientific. This consideration would

obviously invalidate the greater part of biology; but it would

also apparently invalidate the notion of the physical object

itself. Quantitative study always rests on a basis of facts

recognized qualitatively, and the fact that we cannot as yet

measure emotions quantitatively and predict their measures

is no ground for saying that emotions do not exist when we
know perfectly well that they do, or that they obey no

scientific laws when considerable knowledge of those laws

has in fact been attained.

A further consideration is that even if such a hypothesis is

correct we should still be under an obligation to investigate

whether its consequences are true. That implies investigating

mental phenomena, and providing explanations of the facts

that psychoanalysis has already disclosed. The hypothesis
saves no work, but merely attempts to delay it.

10-23. The criterion of philosophical reality has been put in

the form "do things exist when they are not observed ?"

From our point of view this is scarcely a question at all. Our
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primary data are sensations, which definitely do not exist

when they are not observed, and a priori laws, which have

the property of truth whether we know them or not. The

reality of concepts, on the other hand, is not explicitly in-

volved in the question. To ask whether a physical object

exists when it is not observed assumes that it sometimes is

observed, and this is untrue. The physical object exists only
in the sense that it helps to explain sensations; it is never

observed directly. To say that "we observe an object" is

really a shorthand for saying that we have a series of sensations

which are co-ordinated by forming the concept of an object.

In another form, however, the question is significant. We
observe the direction of the planet Jupiter at various times

and predict its position at other times. We also observe a

minor planet and predict its position at any time, allowing for

the attraction of Jupiter on it in the meantime. The results

are verified irrespective of whether we actually do measure

the position of Jupiter in the meantime. It is of course well

known that Neptune and the companion of Sirius were dis-

covered through their perturbations of Uranus and Sirius

respectively ;
their gravitational effect was known before they

had been seen at all. Our most direct reason for saying that

Jupiter or Neptune exists is that we can see it if we take the

proper steps ;
but the motion of other bodies due to it is the

same whether we actually observe Jupiter or Neptune in the

meantime or not. There is no reason in principle for choosing
the direct visual sensation rather than the perturbative effect

as our ground for forming the concept of Jupiter or Neptune.
The two grounds express co-ordinations of different sets of

sensations, that is all. If a concept is formed as a result of

one law, and subsequently a second law is found to be true

in terms of it, we may often just as well take the second as

the definition of the concept ;
and the two together express

a greater generality of the concept than is implied by either

alone. In this case, by visual observations, we infer the law of

gravitation, giving certain co-ordinates, which we say express
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the positions of the planets at any time with a very high degree
of probability. These co-ordinates exist at intermediate times

because we can calculate them, and when observations are

made the inferred values are found correct
; no further justi-

fication is necessary.

We nevertheless need to allow occasionally for the possi-

bility that certain events may occur only when opportunity
arises for observing them. Thus a traveller observing the

United States from the train alone might be pardoned for in-

ferring a law* that a bell is always ringing at railway crossings.

What he observes is that this law holds when his train is near

a railway crossing ;
he has no opportunity of observing that

the bell rings only when a train is near. On the face of it this

is a case of error introduced by the nature of the observing

instrument, but so extreme as to be trivial. Yet it is quite

analogous to a stage in the development of modern physics.

At the time of the Michelson and Morley experiment

physicists generally believed in an all-pervading ether, which

transmitted electric waves, including light waves. The experi-

ment, like many others, was designed to detect motion relative

to this ether. The failure to obtain any positive result led to

the opinion that, though there must be an ether, whenever

we tried to detect motion with respect to it circumstances

conspired to make it impossible to do so. Physicists holding
this view were effectively saying that the observer was always
on the train, however hard he might try to get off it, but were

nevertheless clinging to the view that there were times when
no train was near and that it was reasonable to speculate about

observations in such conditions. Einstein's great advance in

1905 was to recognize from the weight of evidence that a stage

had been reached when too many conspiracies of circum-

stances had to be assumed, and that it was better to take the

known facts as they stood and generalize from them.

In the last resort we can never exclude this type of diffi-

culty entirely. The existence of sensations implies the exist-

* As usual, I mean a scientific law, not a legal one.
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ence of an observer, and there is therefore always a theo-

retical possibility that his presence produces effects that do
not exist otherwise. The practical reasons for ignoring this

possibility are, first, that the presence of another observer

does not as a rule alter the observations made by the first,

which we should expect to happen if the observer had a

disturbing influence; and second, that we do as a matter of

fact proceed by describing and inferring sensations, and that

the state of the world when not observed is not really relevant.

But it is relevant that our laws lead to correct inferences

whether or not we have in each experiment checked every
intermediate step. When the constant of a tangent galvano-
meter has been determined in terms of the rate of deposition
of copper in an electrolytic cell, it is unnecessary to re-

determine it during every later experiment with that galvano-
meter. The scientific law being once established, subsequent
inferences from it are made with the full probability of the

law, and repeated verification is not needed.

The influence of the observing conditions is seen again
in the difference between experiment and observation. In

a laboratory experiment there is usually a possibility of re-

petition ;
a result having once arisen, the apparatus can be set

up again and we can see whether the same result ensues. If

we have a prior belief in determinism we should expect
this. Personally I do not think that a belief in determinism

is a priori. What I think is established by such a repetition is

that the result is independent of the time of the experiment.
In astronomy, on the other hand, we cannot start the planets

off again as they were and see whether they again describe

the same orbits. This possibility of control over the initial

conditions constitutes the difference between experiment and

observation. It is a difference of technique, and not of prin-

ciple. In the astronomical case it is equally well established

that the accelerations are determined by the relative positions

of the bodies and do not involve the time explicitly. If we
could control the initial conditions, it might have been estab-

lished with less trouble
;
but it is established.
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Such judgments of independence are much commoner in

scientific inference than are ordinarily realized. In describing
the result of an investigation we tend to restrict our speci-

fication to the variables actually found to be relevant. In an

electrical experiment we do not usually specify the time of

day, the temperature outside the laboratory, the observer's age,
or thenumber of the laboratory assistant's children. The reason

for this is not a guess or a prior certainty that these factors are

irrelevant. The reason is that in different experiments these

factors are actually different, and the results are found to be

the same. Now independence is the simplest possible scien-

tific law, corresponding to the simplest differential equation

dy
j =

-

dx

Hence it always has a considerable prior probability, and
therefore reaches practical certainty with a very small number
of verifications. We expect things to be independent until

the contrary is shown ;
our interest is in discovering relevant

variables, not in adding to the enormous number of irrelevant

ones.

The belief in determinism is related, I believe, to what

philosophers call the Principle of Causality. It may be ex-

pressed in the form : given the state of the world at any instant,

the state at any subsequent instant is determinate. The truth

of the principle requires some discussion of the meaning of

state. The positions of all particles in the world at some instant

obviously do not determine the motion afterwards unless we
also know their velocities. But particles are not enough. The
time must be the time of the event as understood in the theory
of relativity. If a light is extinguished at an instant, it is still

seen for a finite time at distant places ;
the sensations produced

are the same as if the light was still shining. If we consider

the state of the system at an intermediate time, we must say

that the illumination seen is caused by the light on the way,
for the lamp is no longer available as a cause. The state to be

jsi 14
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specified as determining the future must therefore include

the positions and directions of motion of light waves. The
alternative is to say that the state of a system at any instant is

determined, not by the state at each single previous instant,

but by the aggregate of states at all previous instants. The

position is tenable
;
but now we see that the previous instants

to be considered stretch right up to the instant of observation,

and we may reasonably say that the state then is determined

by the states at intervals indefinitely shortly before. But then

the notion of light on the way becomes a necessity, and wemay
as well say at once that the law of causality is expressed by
differential equations with regard to the time. If we insist on

specifying the state only in terms of material particles we must
consider laws as involving finite intervals of distance and

time explicitly, and we meet the ancient question of action

at a distance. It seems to me that the answer to this question
can be given in terms of the principle that the form of

quantitative laws is differential. The form of the properties of

light away from a gravitational field is given by Maxwell's

differential equations. The fact that light has a constant

velocity is a property of the solution of these equations. Thus
the fact that two events at the same time at different places

do not influence each other is a result explained by the law

and scientifically valuable as helping to establish the law. It

is at this point, I think, that Robb's theory of conical order

of events has its application. Again, the fundamental form

of the law of gravitation is

V2K = -
47T/p

on Newton's theory, or its analogue on the general theory of

relativity ;
the integrated form

is not the fundamental form of the law, but its solution. Action

at a distance seems to imply that the latter should be con-

sidered fundamental, and this course, I think, is wrong.
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The denial of action at a distance in this sense does not

carry with it the acceptance of the notion of an ether. The
latter concept was effectively that of an elastic solid capable
of transmitting transverse waves with a constant velocity, and
has broken down under later work. But the ideas of position
co-ordinates and time, and of the electric and magnetic forces

associated with them, arise of themselves, quite independently
of the assumption of a quasi-material substance filling space.
Our knowledge of electromagnetic phenomena indicates that

they are related by differential equations, which in turn imply
and explain the properties of light. The question of an ether

does not arise.

The principle of causality now becomes the aggregate of

all scientific laws, whether already known or awaiting dis-

covery. To accept it implies a hope that we may some day
know all laws

;
but that day is still distant. As a working rule

it may be valuable for its psychological effect, but there is so

far no definite reason for believing it true, and science can

get on quite well without it.

The words cause
y effect^ and because are on a different

footing, and have nothing to do with a general principle of

causality. If a scientific law involves a number of variables,

then a knowledge of all but one of them determines that one.

We say that it has a certain value because the others have

certain values. The notions of cause and effect involve rather

more than this; there is an asymmetry about them that is

absent from the word because. Thus we may say either that a

triangle has the angles at the base equal because it is isosceles,

or that it is isosceles because the angles at the base are equal.

When we speak of a cause and an effect, we pick out the one

as the cause and the other as the effect, and they cannot be

interchanged. The distinction seems to be one of time
;
the

events under discussion are connected by a scientific law,

and we pick out the earlier and call it the cause, and the later

the effect. There is no distinction of cause and effect for con-

temporaneous events. The definition of simultaneity on the

14-2
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principle of relativity makes it possible to generalize this.

We have seen that two events that are simultaneous for one

observer are not necessarily simultaneous for another ;
but if

two events are specified by position co-ordinates and time,

(x, y, z, t), (x' 9 y' 9 #', t') for any observer, and we consider the

quantity

r2 = c* (t
-

?)*
-

(x
-

x'Y -(y- y'Y
-

(*
-

*')*>

then r2 has the same value for all observers in the same

universe. If it is positive, we can say that the one event is

before or after the other, and it is possible for a message

travelling from one place with a velocity less than that of

light to reach the other place in time \t t'
\.

If t' is the

greater we say that the event (#', y', #', t') is the later of the

two. If r2 is negative, a message would have to travel with

a velocity greater than that of light, and no such velocity is

known in physics. Then we say that neither event is before

or after the other, and in fact we can find velocities of the

observer that would make them simultaneous. Thus events

are arranged in what Robb calls a conical order in terms of

the invariant relations of before and after, where we say now
that one event is before or after another if it is before or after

it to all observers. Then we can say that if there is a law con-

necting two events, the earlier in this sense is the cause and

the other the effect, and this is a definition that applies to all

systems of reference. If two events are connected, but neither

is before or after the other, we may use the word because, but

we cannot say that either is the cause and the other the effect.

In such cases we can, of course, usually trace both to some
cause earlier than either.

Related to the question of repetition is the case where the

thing under observation is destroyed by the act of observa-

tion. Thus when we analyse a chemical compound the final

products are not the same as the original compound ;
when

we observe light it is absorbed in the eye and not re-emitted
;

and when a neurosis is psychoanalysed the patient recognizes
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the relation of the symptom to his early conflicts, which are

no longer of practical importance to him, and the neurosis

disappears. There is again no difficulty in principle when we

recognize that our data are sensations. The chemical com-

pound, light, and the neurosis are all concepts designed to

explain sensations, and there is no difficulty about supposing
that the concepts cease to exist when the sensations they were

designed to explain no longer exist. We do need, of course,

to recognize the memory of previous sensations among our

data.

10-3. Some reference may be made here to the practice in

mathematical physics of "neglecting small quantities" and

arguing by "orders of magnitude". Both methods are

almost universally accepted by physicists; both are looked

upon somewhat askance by pure mathematicians; and both

are completely unintelligible to the man in the street, to

whom the journalistic expression "mathematical accuracy"

implies an entirely erroneous idea of what mathematics

means. Thus the problem of "squaring the circle" still has

its devotees
;
some of the uninitiated try to solve it by methods

that are known to be incapable of solving it, and others repeat
the legend that the problem is still unsolved. I remember

once seeing a claim in a popular science journal that, though
TT has been evaluated to a large number of decimal places, all

such estimates are wrong because they are not exact; the

author proceeded to prove to his own satisfaction that it was

exactly equal to 3-125. This is an extreme case; but there was

apparently a publisher willing to pay for printing the article,

and presumably there was a public willing to buy the journal.

We need not take this proposition seriously; we need only
notice that it has an emotional value expressible in terms of

hard cash. The apparent precision of the number 3-125 was

the attraction
;
the fact that n is known to be between 3-14159

and 3-14160 was considered irrelevant. On a somewhat

higher level, we have the candidate in the Mathematical
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Tripos who attempts to do a problem in small oscillations

without neglecting the squares of small quantities till the

very end. He never gets the right answer (even if he gets an

answer at all), because he always makes a mistake in algebra.

We have also the candidate who can do a complicated
factorization but cannot prove the simplest inequality. In

this we must detect an inherent tendency to trust the word

equal, but a suspicion of greater than and less than, which is

scarcely exceeded by that directed against approximately equal.

In the sense understood by the man in the street, exactness

has almost disappeared from the subject-matter of modern

pure mathematics. It survives in projective geometry, which

is really the study of sets of algebraic equations, and in the

identification of high prime numbers. Modern analysis deals

with infinite series and the behaviour of integrals and

differential coefficients, all of which involve the notion of a

limit. Thus the sum of an infinite series whose nth term is un
is defined as the limit, if any exists, of the sum of the first

n terms when n becomes indefinitely large. The criterion that

the sum may be S is that, if we choose any positive quantity e,

however small, we can find a value of n such that for all values

ofm greater than n
y
the sum of the first m terms differs from

S by less than e. While the sum S appears as an exact value,

it is the result of a limiting process, which depends essentially

on a recognition of the meanings of greater than and less than.

The solutions of most of the differential equations of physics
are expressible as series possessing sums so defined, and their

numerical values can be found by actually computing the

series, term by term, till the desired accuracy is obtained.

The physicist often looks at the summation of series from a

different standpoint. He is not interested in the fact that the

sum of n terms of the series has a definite limit when n

becomes indefinitely large ;
he has not the slightest intention

of computing more than a certain finite number of terms. The
existence of the function associated with the series is usually

known already, and what the physicist needs is to evaluate
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it with the requisite degree of accuracy without a prohibitive
amount of labour. The mathematical property of convergence
is neither a necessary nor a sufficient condition for physical

utility. Thus if we consider the exponential series

X^ X
e* = i + x+ -J+...+ . + ...

2 ! n \

and put x = 1000, we have a series that converges in the

mathematical sense. But the terms increase numerically up
to n = 1000, and the actual computation would be hopeless.

Actually, of course, one writes

-1000=

and computes Iog10 e from some such formula as

i/log10 e
=

loge 10 = 3 (
log* f + loge f) + log. f .

Convergence is therefore not a sufficient condition for utility.

Nor is it necessary, for if we consider the series

<** (i
- erf x)

= 7r-i far
1 - - x~*+ $ ar5 - I- 5̂ *-7 + ..A

,v '
V 2 2.2 2.2.2 /

the series on the right is always divergent. But it can be

shown that the sum of the first n terms always differs from

the function on the left by less than the last term retained.

Ifx is large, the terms decrease to a minimum, and the smallest

may be within the range of accuracy required. Thus for

x = 3, the fourth term is about -^ of the first. Such series

are called asymptotic, and have been extensively studied in

modern pure mathematics. But whereas the tendency of the

pure mathematician is to consider convergence as the generally

important property, and the asymptotic property as a make-

shift, physical utility makes the asymptotic property valuable

and convergence unimportant. But the real test for physical

utility is that the sum of the first n terms (where n is pre-

assigned, usually does not exceed 10, and often is i), shall

differ from the function represented by less than the limits of

error permitted by other considerations. If this condition is
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satisfied it is no concern of the physicist's how the later terms

of the series behave. If it is not satisfied he will have recourse

to numerical solution of the diiferential equation.

The "neglect of small terms'* in a differential equation

implies that the solution is in error to some extent, which

will depend on the actual magnitude of these terms. What is

certain is that the solution will remain approximate through-
out a certain range of the independent variable ;

the smaller

these terms are, the longer the range will have to be before

their integrals become large enough to affect the accuracy of

the approximation to a given extent. In some cases we can

prove rigorously that they will never do so: in others we
cannot. It seems to me that the general theory of the degree
of accuracy of these approximations is an important and

almost unworked field of pure mathematics. The physicist's

method is to solve the problem first by neglecting them, and

to substitute the result in the small terms to verify that they
do remain small.

The use of "orders of magnitude" is a further departure
from popular standards of accuracy. It usually consists

essentially in the principle that if x varies from a to b, a

function / (x) varies from / (a) to / (6), and we can replace

its derivative/' (x) by its mean value --/_: If/' (x)

is continuous this is true for some value of x between a and b
;

but the method goes further. If we have a differential equa-
tion we may carry out operations of this type on both sides

of it and reduce the equation to a single algebraic equation.
The result is necessarily inaccurate. Its utility is essentially

in carrying out preliminary tests on a theory. If we get an

agreement within a numerical factor of 5 or so we may say
that the theory is worth closer examination

;
if the two sides

of the equation so obtained differ by a factor of 1000 or more,
we consider that further investigation is unnecessary. There

may be physical grounds, in a particular problem, for contrast-

ing two hypotheses directly, and then the method of orders of
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magnitude will enable us to reject one and retain the other

without the trouble of carrying out an accurate investigation.

These methods hardly arise, I think, in the establishment of

a physical law. They are concerned with the investigation of

the competence of different causes to produce a given

effect, the laws being already known.

The term "order of magnitude", in the physical sense,

means rather more than it does in modern pure mathematics.

Thus the pure mathematician may write an equation

where/ (x) and
<f> (x) are two known functions of #, and he

will say that their difference is of the order of magnitude
of x2

. He means that when x tends to zero, the ratio

(f(x) <f> (x)}/x
2 tends to a finite limit or zero. The limit may

be 1000. A physicist in such a case would not say that

f(x) <f> (x) is of the same order of magnitude as x2
,
for he

probably wants the actual values of the functions when x is

different from zero, and if the limit is a large number the

utility of the approximation may be vitiated. The physicist's

meaning is more restricted in one way, though less precisely

defined in another. He may say that two quantities are of the

same order of magnitude when there is no question of a limit
;

thus the masses of Jupiter and Saturn are of the same order

of magnitude. Two quantities may be said to be of the same

order when their ratio does not exceed 10; and the justifica-

tion of the method is that the ratio of the mean values actually

compared in the reduced equation is really a numerical

constant arising in the solution, and that in practice such

constants hardly ever do exceed 10. Exceptions sometimes

arise : thus the condition that turbulence may persist in the flow

of a fluid in a pipe involves a numerical constant of the order

of 1000, but that is really because the solution of the problem
involves not one equation, but a family of four differential

equations, three of the second order and one of the first.

Thus there may be such numerical constants as 7 ! or 5040.



CHAPTER XI

OTHER THEORIES OF
SCIENTIFIC KNOWLEDGE

I have seen all the works that are done under the sun; and, behold, all

is vanity and vexation of spirit. Eccles. i. 14

A preliminary explanation is needed before entering on the

topics of this chapter. The theories considered here are

selected on account of their relation to the general aim of this

book, which is to systematize the processes actually employed
in the acquisition of knowledge by experience. They have in

common, in my opinion, the feature that if they were accepted
as practical rules of working they would make this acquisition

impossible. In some cases they were expressed by their

authors some time ago, and I am not in all cases in a position

to know whether the respective authors still hold the views

in question. For my purpose, however, it is the theories

themselves that matter, rather than the personal question of

whether the individual authors still hold them
;
for in fact each

theory still certainly has a number of professed adherents.

11-1. The statistical theory of probability. In the present
work probability is regarded throughout as a property of the

relations between propositions. Like such notions as force,

interval of time, distance, electric current, colour, pitch of

sound, and so on, it is immediately recognizable by conscious-

ness in suitable circumstances. Like them also its treatment

can be made quantitative, and its specification can thereby
be made enormously more precise. The original meaning,

however, is never lost. If we ignore it we are deliberately

neglecting a piece of knowledge that we have, and are there-

fore restricting the application of scientific method. This is

more serious in the case of probability than with the other
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concepts mentioned, because it is not the subject-matter of
a branch of science ; science is a branch of the subject-matter
of probability. To ignore probability is to ignore the problem
of scientific inference and to deprive science of its chief

reason for existence.

Many writers, following the late John Venn*, have at-

tempted to avoid the notion of probability as a primitive con-

cept by trying to define it in terms of the composition of

samples. Venn considered that the notion of probability pre-

supposes a series, the terms of which are indefinitely numerous
and represent the cases of an attribute

</>.
From these one can

pick out a smaller class, the members of which possess the

further attribute
</r.

If then we have chosen m members in

all, and / of them belong to the smaller class, the probability
of

i/s given </>
is defined as the limit of l/m when m becomes in-

definitely great. The form of this definition restricts the field

of probability very considerably. As a matter of simple fact,

when we speak of probability we do not consider an inde-

finitely large number of trials. In many cases, such as when
we speak of the probability that the solar system was formed

by the disruptive approach of two suns, or that the stellar

universe is symmetrical, the idea of even one repetition is out

of the question. Yet these are precisely the cases where the

notion of probability is most valuable.

But actually Venn's definition suffers from a drawback that

deprives it of all application whatever. If a definition is to

be of any use it must imply a test, and we must be able to

carry out that test. On the a priori view, when we say that

the probability that a penny will come down heads is |, we
make an immediate judgment. On Venn's view we must
throw it an infinite number of times and take the limit of the

ratio of the number of heads to that of all throws, and nobody
has had, or ever will have, time to do it. There is no case

where the value of the probability, on Venn's definition, is

known, or even where it is known to exist.

*
Logic of Chance t pp. 162 et seqq.
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We must remember that this view is designed to avoid

the need to treat probability as an undefined concept with

a priori laws of its own. The undefined concept view gives a

justification for the opinion that a large sample will probably
be approximately a fair one

;
if we reject this view we also

reject the justification that it gives, and must be prepared to

find a new one. The question at issue is whether, apart from

the a priori view, there is any reason to believe that the ratio

considered in Venn's view tends to any limit whatever. To

say that it does is essentially an assertion about the result of

an experiment that nobody has ever tried, or ever will try.

It can be seen easily that, with any value of the probability

whatever, other than o or i, it is possible to have selections

that do not give any limit for the ratio. For if the ratio is to

tend, when m is large, to any limit between o and i, the

numbers of things possessing and not possessing the attribute

are both infinite. We cannot take the actual ratio of the

whole number of 0's to the whole number of <'s to express
the probability, for both numbers are in fact infinite and

their ratio is indeterminate*. The method of proceeding to the

limit is essential to the definition. But if at any stage we are

able to select either a
</r

or a not-^r, it is possible to make the

limit anything whatever, or there may be no limit at all. If,

for instance, whenever a
i/j

occurs we write i, and whenever

a not-j/r occurs we write o, l/m will be the mean of the first m
terms in the series obtained. If they occur in such an order

as to give the series

IOIIOOOOIIIIIIII.

where the number of digits in any block after the first is

equal to the number of digits that have occurred previously,

the ratio is about f at the end of each block of I's, and about

\ at the end of each block of o's. It therefore tends to no

* R. A. Fisher, with what looks like the courage of despair, says that

in a "hypothetical infinite population" the ratio is perfectly definite.

Cf. Phil. Trans. 222 A, 1922, p. 312.
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limit whatever. Again, in one selection we may get the

series
IOIOIOIO.

which gives the limit
;
but from the same class we could

make the selection
100100100

which gives the limit . The numbers of available o's and i's

being both by hypothesis infinite, there is no possibility of

exhausting either, so that such series are in fact possible. It

is therefore possible for Venn's ratio to tend to the wrong
limit, or to give no limit whatever. The very existence of the

probability on Venn's definition requires an a priori restric-

tion on the possible orders of occurrence of
ift's and not-^'s.

No supporter of this view has succeeded in stating the nature

of this restriction, and even if it were done it would con-

stitute an a priori postulate, so that this view involves no

reduction of the number of postulates involved in the treat-

ment of probability as an undefined concept with laws of its

own.

The difficulties become worse when we attempt to combine

probabilities, for then we have to face an indefinite repetition

of infinite series. This is called by Venn the use of cross-series
y

and forms an important part of his theory of inference. It is

necessary, for instance, in giving a meaning to the proposition

connecting the probabilities of a proposition referred to

different data,

P(p.q\h) = P(p\q.h)P(q\h).

For an infinite series is necessary to give an account of

P (/> | q . A), which is the limit derived from the frequency of

the truth ofp among entities satisfying q and h. Such entities

are, however, only a part of those that satisfy A. Thus to

establish a meaning for the numbers P (p . q \ h) and P (q\h)
we must consider all entities satisfying A, whether they satisfy

q or not. Thus further series must be constructed to show how
often q is actually true, and this requires, according to Venn,
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an infinite number of series of entities all satisfying A, so that

we can examine in one direction to find the frequency of p
given q and /r, and in the other direction to find those of q

given h and ofp . q given h. Thus the difficulty of obtaining

enough terms, an acute practical point in the simple case, is

here intensified. Further, there is no more reason to believe

in the existence of limits in this case than there was in the

other; and the opinion that the limits, if they exist, will

satisfy the relation is justified only if the samples are made

according to some special rule. The difficulties are merely

complicated and not removed by the use of cross-series
; and

the statistical theory of probability becomes a network of

begged questions.

There is a question of the theory of probability, treated as

an undefined concept, that is related to the question of the

existence of Venn's limit. If the probability of
iff given <f>

is r,

and is the same however many instances have been examined,
what is the probability that when the sample becomes in-

definitely large the ratio l/m does tend to the limit r? To say
that it does so means that for any quantity e, however small,

we can find a number m$ such that, for all values of m greater

than m
, l/m is between r e. What is the probability of this

proposition? It has not, so far as I am aware, been evaluated,

and a determination would be interesting. It is not rigorously

unity, since it has already been shown that there are possible

samples that do not satisfy the proposition. It may, however,

differ from unity either finitely or infinitesimally. If the

difference is finite, the Venn definition loses the last of its

justification from the undefined concept view. If it is in-

finitesimal, we might, if we thought the definition worth

saving, save it at the cost of admitting infinitesimal prob-
abilities different from zero.

11-2. Keynes's theory ofprobability. To those already familiar

with J. M. Keynes's Treatise on Probability (1921) it will be

obvious that the point of view of the present work is very
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similar in some places and very different in others. The task

of comparing the developments explicitly, point by point,

would be too formidable, but could for the most part be

achieved by the reader sufficiently interested to carry out a

direct comparison. Keynes agrees with me in regarding prob-

ability as an undefined concept, really following De Morgan
and Jevons, with a series of earlier writers going back to

Leibnitz. He differs from the earlier writers, and from me,
in refusing to admit that all probabilities are expressible by
numbers. This amounts to denying the postulate of the

present theory, that of any two probabilities one is greater

than, equal to, or less than the other
;
or the equivalent, that

of any three unequal probabilities one is between the other

two. Granting this proposition, it has been proved in this

work that probabilities can be uniquely associated with

numbers. Keynes's alternative is something like the view

that probabilities resemble places on the earth's surface
;
we

might say that New York and London are both between the

North and South Poles, but neither New York nor London
is between the other and the North Pole. It seems to me
that all probabilities actually are comparable and that

Keynes is merely creating difficulties. He manages to pre-

serve the form of the probability of the disjunction of two

propositions by defining addition in terms of it
;
that is, the

proposition

which to me is a law connecting numerical estimates of prob-

ability, is to Keynes the definition of addition, and the terms

in it may not be numbers at all. Similarly the law 2*32 (4) is

converted into a definition of multiplication. The mathe-

matical development remains much the same
;
the only ques-

tion is whether the results mean anything. Thus on Keynes's
views probabilities might be complex numbers

;
and then it

is possible that inequalities involving products, which are

true for real numbers, may break down, and arguments based
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on the approach of probability to certainty with repeated
verification may fail. But my real objection to Keynes's

postulate is that it is one of those attempts at generality that

in practice lead only to vagueness.
It might be held that, since different people do appear to

assess probabilities differently, Keynes's postulate might fit

the assigned probability instead of the true probability. But
I do not think that this is the case. We know people who

appear to assess all probabilities at either o or i
;
we know

others who seem to assess them all at
, whatever the available

evidence
;
and there may be some who assign the probability

i to their own hypotheses and \ to all those of other people,
unless of course the latter happen to contradict their own,
when their probability is o. But such estimates do not follow

the quantitative rules connecting the probabilities of pro-

positions referred to different data, and can only be under-

stood by introducing psychological considerations. I think

the correct attitude to them is that they are simply wrong,

just as it is possible to get a wrong answer in solving an

algebraic equation.

For some other comments on Keynes's work I refer to

Nature^ Feb. 2, 1922, 132-133.

11-21. There is just a possibility that probabilities may in

certain circumstances require for their expression more

numbers than the real numbers. Just as the real numbers are

more numerous than the rational fractions, it is possible to

define continuous series with more members than the real

numbers, and yet satisfying the condition that of any three

members of the series one is between the other two. But this

is a degree of generality that has not yet required recognition.

11-3. Phenomenalism, This theory of knowledge may be

defined by the rule that nothing is to be supposed to exist

that cannot be reduced to descriptions of sensations. It may
be traced back to the mediaeval writer William of Ockham,
who said, "Entities are not to be multiplied beyond neces-
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sity", and as such was probably a reaction against the dis-

position of primitive man to postulate an independent god or

demon as a cause for everything he could not understand. In

its modern form it is effectively due to Ernst Mach and Karl

Pearson, whose discussions of the bases of mechanics led more

than anything else to the recognition of the need to define force

and mass in terms of actual experience, so far as possible, and

to the dropping of such ideas as absolute position and ether.

Having myself started from the phenomenalist position, I

must express my great indebtedness to these writers, but I

consider that the pure phenomenalist attitude is not adequate
for scientific needs. It requires development, and in some
cases modification, before it can deal with the problems of

inference. We must, as has been said already, always dis-

tinguish between sensations actually experienced and those

inferred from other sensations. The former can be described
;

the latter can only be inferred with greater or less degrees of

probability. Mach hardly considers the question of prob-

ability ;
Pearson does not go beyond Laplace's theory. It has

been shown here that a requisite of any satisfactory theory of

inference, as actually carried out in scientific work, is a re-

cognition of the high prior probability of the simple law.

There is no harm in concepts that cannot be defined as classes

of sensations, provided that a few of them will help in de-

scribing a large number of sensations. This is the test of the

scientific validity of a concept ; philosophical reality has no-

thing to do with it. An electron, for instance, is a valid scientific

concept; I think that it is merely playing with words to say

that it is a class of sensations, or that it can be described in

terms of sensations. The same applies to the matter at the

centre of the earth, or to the state of the earth just after its

formation; both enable us to co-ordinate sensations actually

experienced and are therefore admissible concepts.

11-4. The theories of Russell and Whitehead. Mr Bertrand

Russell, in Mysticism and Logic (1917), tries to tackle the

JSI 15
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problem of actually defining objects in terms, not exactly of

sensations, but of sense-data, which are effectively sensations

with the errors of observation removed. Physical objects

still cannot be adequately defined as the class of those sense-

data that, in ordinary language, would be said to be percep-
tions of it, for then the object would change when new aspects
of it are observed, and this is not to be allowed. Therefore he

considers the object defined in terms of all possible aspects
of it

;
these aspects are called sensibilia, and resemble sense-

data in everything except that the majority of them are not

perceived. A physical object is then a class of sensibilia.

From the practical scientific standpoint the weakness of

this attitude is that we do not know what the sensibilia are

like. An object, on this theory, could never be described until

we had a knowledge, by experience, of all its aspects, per-
ceived and unperceived, and this is inherently contradictory.

Even the perceived sensibilia, or sense-data, cannot be de-

scribed in terms of sensations until we have some rule for

removing the errors of observation. The unperceived ones

are necessarily never known directly, but have to be inferred

from the perceived ones
;
and this can be done only by using

the laws of physics, inferring the nature of the object, and

then proceeding to the unperceived sensibilia. The physical

object and the laws of physics are anterior in knowledge to

the sensibilia, and Mr Russell's theory, whether it is logically

consistent or not, is not a theory of scientific knowledge.
In Prof. Whitehead's theory* events, instead of sensibilia,

are the fundamental entities. Each event contains other

events, so that we can specify series of events such that each

event in a series surrounds all after it. The limit of such a

series is a point-event, and it is to such point-events that the

laws of physics are supposed to apply. But the notion of a

limit requires an infinite class, and an infinite class of ob-

servations is impossible in practice.

* An Enquiry into the Principles of Natural Knowledge, 1919.
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We may say that it is never possible to construct a valid

theory of knowledge that involves the use of infinite classes

of empirical data. The objection is similar to that given by
Poincar^* in his criticisms of Cantor's theory of infinite

numbers. Poincar6 argued that it is impossible to assert any-

thing about a class, and in particular anything about the

number of its members, until every member of the class has

been defined in words
;
and as only a finite number of entities

can ever be defined in words, it is impossible to know any-

thing about an infinite class, so that there can be no knowledge
of infinite numbers. The argument, as it stands, is not valid

against Cantor's theory, for in order to make an assertion

about a class it may not be necessary to have definitions of all

the members separately ; often a general proposition about all

members can be asserted or postulated, and is enough for the

purpose. Poincar, indeed, seems to have overlooked the fact

that if his argument were sound it would also destroy thewhole

theory of infinite series and of differentiation and integration ;

thus little would be left of higher pure mathematics. Thus the

convergence of a series depends on the proposition that the

sums of the first n, n -f i, n -f 2, ... terms, for some value

of n y all differ from a certain number, called the sum of

the series, by less than a fixed quantity . These sums are

infinite in number, and hence it would be impossible, if

Poincar^'s assumption were granted, ever to prove that a

series is convergent. This result is, of course, quite unaccept-
able. But the argument would go even further than this.

Nobody has had time in his life to construct definitions of

every member of a class of a million members; and as a

number is merely a property of a class, it should be impossible
to prove that, for instance,

i ooo ooi 2 = i ooo 002 ooo ooi.

Thus the argument would also invalidate most of arithmetic.

If therefore we believe that the propositions of arithmetic

* Science et Methode, 1908, 192214.

15-2



228 OTHER THEORIES OF SCIENTIFIC KNOWLEDGE

have some meaning and are true, we cannot accept Poincar^'s

objection to the theory of infinite numbers.

But while the argument is wrong in this case, it is clearly

valid when our only source of information about the members
of a class is empirical ;

for the total number of observations

a person can make in his life is finite, and hence his ex-

perience alone can never tell him anything about all the

members of an infinite class of entities. Any proposition
about such a class, or about all its members, is necessarily

either wholly a priori or else an inductive generalization,

and neither known directly nor obtainable from experience

by the principles of pure logic alone. The fundamental data

of any branch of science must consist of a finite number of

observational results and some a priori postulates.

One consequence of this is that we can never prove the

existence of a limit to which a series of entities known by

experience may tend, for in order to establish the existence

of such a limit we should need to have knowledge that an

infinite number of such entities are within a definite distance

of that limit. This by itself would not be a fatal objection to

any such theory, for there seems to be no possibility of con-

structing a theory of knowledge without some assumptions,
and it may be considered that in the case in question certain

conditions are satisfied under which the existence of a limit

is known a priori. But what is fatal is that in physical pro-
blems we do not merely want to know that the limit exists

;

we want its value according to some definite system of

measurement, and that value can never be known a priori ;

indeed, if it were, there would be no need to make measure-

ments at all. Thus if a limit is ever used in a scientific theory,

its value and all propositions about it are neither a priori nor

known by experience, and therefore are not primitive pro-

positions that can be used in a theory of knowledge based on

experience. It is seen that this consideration rules out at

once the statistical definition of probability, with the theories

of Russell and Whitehead just mentioned.
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PROBABILITY IN LOGIC AND
PURE MATHEMATICS

By convention it has been decided that if the proposition p
implies q y

the probability number P (q \ p) = i . The word

implies is used in the ordinary sense, namely, that ifp is true,

then q is true. This is the definition given by Whitehead and

Russell. There is, however, a slight difficulty. Whitehead and

Russell prove the propositions

p implies that q implies

implies that p implies q. )

These are often read "a true proposition is implied by every

proposition" and "a false proposition implies every pro-

position, true or false ". But when we analyse these pro-

positions in terms of the definition, they become

If p is true, then if q is (also) true, p is true.l

If p is untrue, then if p is true, q is true.

The first is now seen to mean simply that additional (true)

information does not contradict a proposition already known
to be true

;
its paradoxical appearance is gone. It is expressed

in our rule

P(p\p.q) = l.
(3 )

The second, on the other hand, does not enable us to infer

q without the knowledge that p is both untrue and true
;
and

this circumstance fortunately never arises. But formally it

appears to require

P(q\p.~p) = i; P(~q\p.~p)=i, (4)

and therefore

P(qv~q \p.~p) = 2, (5)
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whereas no probability can exceed i . Similarly we could write

~p for q in (3) and get

and replacing/) by ~p
P(~p\p.~p) = i. (7)

It seems that contradictions are inevitable if we adhere to

these propositions and allow contradictory propositions to

appear among the data simultaneously. I think the correct

convention in these circumstances would be that the prob-
abilities are simply indeterminate. Thus we have

P(p . ~ p .q | h)
= o

= P(q\P-~P-h)P(p.~p\h),
and P (p . ~ p | h)

= o. Hence P (q \ p .~p . h) is of the

form o/o and therefore is indeterminate.

So far as the theory of scientific method is concerned, the

point is, of course, purely academic. Our estimates of prob-

ability are always to be based ultimately on a priori principles

and sensations, which are never mutually contradictory, so

that the difficulty can never give any trouble in practice.

It might be suggested that the statement "p implies q"
means more than "if

/>,
then q", and requires an actual

proof that the relation of implication holds for the propositions

p and q\ until this is given, the probability of q given p is less

than unity. I think that this is a wrong attitude. Consider

some undemonstrated proposition of pure mathematics, such

as Fermat's last theorem, orthe proposition that thethousandth

decimal in the expression for e is zero. The data in each case

are perfectly definite. In the latter case it is known how
the proposition could be tested if anybody was sufficiently

interested to do the work; in the former all the powers of

the natural numbers are perfectly definite, and it is only a

question of whether actually, with a value of r greater than 2,

two numbers x and y exist such that (x
r
4-

<y
r
)
1
/r is a whole

number. Each proposition is simply true or false on the data
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of pure mathematics themselves ; a proof does not affect their

truth-values, but merely finds out what they are. The pro-

bability of Fermat's last theorem, given the data of pure

mathematics, is therefore either o or i ; we simply do not

know which. The proposition
"

it can be proved that Fermat's

last theorem is true ", on the other hand, is different from the

proposition
"
Fermat's last theorem is true ", for it introduces

the question of the possibility of proof, which is a question

of the capabilities of the human mind, and a legitimate field

for scientific investigation based on experience. In view of

the efforts that have been made to prove the theorem, we

may say that the probability of this proposition is small,

though not absolutely zero.
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INFINITE NUMBERS

The following remarks are not intended as a full account oi

the modern theory of infinite numbers. This book is meanl

mainly for theoretical and experimental physicists, and foi

their purposes a brief summary is probably all that is needed

If more is required, G. Cantor's Transfinite Numbers, or Little-

wood's Elements of the Theory of Real Functions, may be read

a full account is in Whitehead and Russell's Principia Mathe-

matica. A glance inside is worth while, as the inside is even

more impressive than the outside.

The fundamental notion involved in number is that oi

comparison of classes. If we have two classes a and j8, such

that they can be arranged so that to every member of o

corresponds one member of j8, different 's corresponding tc

different jS's, then the number of members of a is less than

or equal to that of
/?, and that of j8 is greater than or equal tc

that of . If the classes can also be arranged so that to ever}

member of /? corresponds one of
,
then the classes are said

to be equal in number, and an arrangement can be found sc

that each member of either class corresponds to one of the

other, none at all being left over. The smallest infinite numbei

is the number of the positive integers ;
this is called X . We

can prove that K is also the number of the rational fractions

For we can arrange the rational fractions thus :

i, i, f, A. $, i. I, i. t. i, f , *, , !. *, I, f. I. f

Here we first of all group together those fractions with the

sum of the numerator and denominator the same, and arrange

the groups so that this sum is greater in the fractions of one

group than in those of any earlier group. In each group we

place the fractions in order of increasing numerator. This

arrangement includes every rational fraction, and they are
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put in a definite order, so that every fraction is reached in a

finite number of steps from the beginning. The positive

integers i, 2, 3, ... can therefore be placed against them. A
one-one correspondence is therefore established between the

rational fractions and the positive integers, and the two

classes therefore have the same number.

It can be shown similarly that the number of numbers that

are the roots of algebraic equations with rational coefficients

is XQ . For an equation may first be multiplied by the lowest

number that will clear it of fractions. For each equation we
can take the sum of the absolute values of the coefficients

and the degree, and we can arrange the equations in groups

according to increasing values of this sum. The number of

equations in each group is finite, and the total number of their

roots is also finite. Thus we can arrange both the equations

and their roots so that every member is reached in a finite

number of steps from the beginning ;
the number of algebraic

equations, and the number of their roots, are therefore

both K .

Similarly the number of differential equations of finite

order and degree, such that each coefficient is capable of X

values, is XQ. For we can begin by arranging the N values of

each coefficient so that they correspond to the whole numbers,
and then replacing the values by the whole numbers them-

selves. This gives a new class of differential equations with

the same number as the first. Now rationalize each equation.

Then form for each equation the sum of the order, the degree,

and all the coefficients. Arrange the equations in groups,

according to increasing values of this sum. The number of

equations in each group is finite, and therefore we can arrange
the equations so that every member is reached in a finite

number of steps from the beginning ;
and the total number of

these equations is infinite. Hence the number is N .

If we have two classes of numbers m and n
y
we can form

pairs of things one from each class. The possible ways of

forming such pairs are mn in number. This is taken as the
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definition of the product of two numbers. We can prove that

the product of ^ by any finite number or by itself is also NO

Considering the latter proposition, No . NO would mean the

number of pairs of the form (x, y), where x and y are whole

numbers. We can arrange these pairs in groups for which

x + y has the same value, and then arrange the pairs in each

group in order of x increasing. In this way the pairs are

arranged in order so that each is reached in a finite number

of steps from the beginning, and their number is infinite.

Hence their number is N . Thus NO . NO = NO .

Suppose next that we have two classes of numbers m and n.

With any member of the first class we can associate one of

the second class in n ways ;
with another member of the first

class we can associate one of the second in n ways (repetitions

being allowed). Then we can say that the number of ways of

covering the two together by members of the second class

is n2
. If we consider every member of the first class associated

with every member of the second, the whole number of ways
of carrying out such pairings is called nm . This operation is

called exponentiation. In particular if m numbers are to be

assigned and each of them can take n values, the total number
of ways of assigning values to all of them is nm .

The number of decimals to the base n is nso . For in each

decimal there are N places to be filled, and n possible numbers

o, i, 2, ... n i can be placed in any place, irrespective of

what numbers are in any other place. If we assume that any
real fraction, rational or irrational, can be expressed as a

decimal with any base, it follows that the number of real

fractions is n^o, where n may be any whole number greater
than i. Also, since our fraction can be reduced in particular
to the base 2, we have

ns*o = 2^0 = C,

say. This number C, the number of real fractions, is called

also the number of the continuum.

It can be proved that if n is the number of a class, 2n is
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always greater than n. We need this result especially for the

case where n = NQ. Suppose, if possible, that 2Ko was equal
to KQ . This would mean that all real numbers could be so

arranged that they corresponded one by one to the whole

numbers in ascending order. Then imagine each converted

to a decimal to the base 2. In each place the digit is either

o or i . We can now construct a decimal that differs from the

first of the series in the first place, from the second in the

second place, and so on. This decimal will then differ from

every member of the series that was supposed to include all.

It follows that 2*0 > N .

It follows at once that 2No > N n
,
where n is any finite whole

number. For by repeated application of the result that

KQ
2 = NO we can show that N n == N .

The same set of things may be arranged in different ways.

If an arrangement is such that each member of the series has

an immediate successor, we say that the series is well-ordered.

Thus the whole numbers i, 2, 3, ... in ascending order of

magnitude constitute a well-ordered series
;
for to each num-

ber there corresponds a "next" such that the latter follows

it and there is none between. The rational fractions, or the

algebraic numbers, in ascending order, are not well-ordered,

because between any two there lie an infinite number of

others. These series are called dense. The whole numbers in

ascending order are said to be of ordinal type a)
;
the rational

fractions or the algebraic numbers between o and i in ascend-

ing order, omitting o and i themselves, are said to constitute

a series of ordinal type 77.
It is doubtful whether every class

can be arranged so as to be well-ordered
;
the doubt extends

to the continuum itself. The continuum of real numbers

between o and i
, omitting the extremes, is said to be of type 0.

Little progress has been made with the theory of the ratios

of infinite numbers. It appears to be very doubtful whether

such ratios could be defined so as to satisfy the ordinary

rules of fractions; we should wish, that is, to be able to

multiply or divide numerator and denominator by the same
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number without altering the fraction. But if we try to do so

here we get, for instance,

In the circumstances it seems undesirable to admit them to

the theory of scientific method, at least until they have some

recognized status in pure mathematics.

The number of functions of a real variable is Cc
. For to

every value of the variable may correspond any of C values

of the function
;
and if the variable can assume any value

within a continuum, it has C possible values. Hence by
definition the number of functions is CG

.

The number of continuous functions is C. For if a con-

tinuous function is assigned for all rational values of x it is

determined for all other values. For each rational value of x,

the function can take C values. Hence it can be assigned for

all rational values in Cso ways. But

= 2*0' = 2*o = C.

The same is true for analytic functions, even when each co-

efficient can take only X values. For the number of such

functions, n say, is less than or equal to C, since they form

only a part of all analytic functions. But their number is

Koo>2so=C. Thus
C> n > C,

and therefore n = C.
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THE ANALYTIC TREATMENT OF
THE SINE AND COSINE

We define cos x and sin x by their expansions in series

;y
= cos*= i

-^j
+
^j-6j+

-. (0

**3 *u*5 **7

yi
= sinx = x-

-j
+

5J

- -
(

+ .... (2)

Both series are absolutely convergent and differentiable term

by term for all values of x. We see at once that

d d .

-j- cos x = sm x\
-r si

dx
'

dx

and that both cos x and sin x satisfy the differential equation

.

-j- cos x = sm x\
-r sin x = cos x,

dx
'

dx '

If we multiply this by 2 -~, the left side becomes a perfect

differential and we infer that

(i^l + V2 = constant. (5)
\dx)

J

Whether y is taken to be cos x or sin x, we can substitute for

its derivative from (3) ;
hence

cos 2 x 4- sin 2 x = constant
; (6)

and putting x = o we see that the constant must be i . Thus

cos 2 x + sin2 x = i . (7)

When x = o, yQ
=

i, -^
= o, -. - = i. Hence for a range

of positive values y is positive and decreases as x increases.
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It must therefore either (i) vanish for a finite value of x,

(2) begin to increase again without vanishing, or (3) tend to

a finite limit less than i as x increases indefinitely. Alter-

native (?) implies that dy /dx vanishes for two values of x,

o and another, and therefore d2
y /dx

2 must vanish between

them. But this cannot be the case, because d2
yQ/dx

z = yQ

and y is by hypothesis positive throughout the range.
Alternative (3) implies that dyjdx tends to zero and therefore

again d2
y /dx

2 must vanish for a finite value of x, which is

again contradicted by the supposition that y is always posi-
tive. Hence there is a value of x that makes y zero. We call

this TT. Evidently when x = TT, sin x = i by (7). We have

from (5) and (7)

whence by integrating and introducing the limits

Now consider the function

/ (xi >
xz)

= cos xi cos xz
~ sm xi sm X2> (

IO
)

and put x2
= x xt . Then

f(xly x x^ = cos xl cos (x tfj)
sin Xi sin (x x^. (i i)

Differentiating with regard to x1 ,
we have

=-- /fa ,
x Xt)

= sin^ cos (# ^) + cos xl sin (^ xt)
uX-^

cos JCj sin (x x^ 4- sin xl cos (jc x^
= O. (12)

Thus f(xlt x xj is a function of x only. We can evaluate

it by putting xl
= o, when we see that its value is cos x.

Now restoring x2 we have

cos (#! -|- #2)
= cos xl cos #2 sin xl sin jc2 . (13)

By differentiation with regard to xl

sin (xt + #2)
= sin jcx cos x2 -f cos ^ sin x2 . (14)
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Now replace xl by x and #a by JTT. Then

cos (far + x)
= sin#; sin (far + x)

= cos x. (15)

Replace x now by TT + x. Then

cos
(TT + x)

= sin (rr + #)
= cos x\

sin
(77 + x)

= sin #. (16)

Now replace x by TT + A:, and we have

cos (27r + A;)
cos x, sin (ZTT + ^c)

= sin x. (17)

Therefore the functions cos x and sin x have period 277.

We have thus obtained from the analytic definitions the

differential equation (4) satisfied by the cosine and sine
;
the

relation (7) showing as a corollary that these functions cannot

have absolute values exceeding i for real values of the

argument; the addition formulae (13) and (14); and the

periodic property (17).
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I. Approximation to /(/)
= rC

t
x l

y
r~ l when r and I are

large and x +y = i

We introduce Gauss's H-function, defined for real values of

u greater than i by

n() = Fe~*t"dt. (i)
Jo

When u is an integer
II (u)

= u ! . (2)
Then

rC _ _ J>L_^ ^z

~n(/)ri(r-/)*
'

When u is large, we have Stirling's approximation*

II (u)
=

(27r)i w
M+i <T

M
{i + O (w-

1

)}. (4)

Let l=*rx + ar% + 17, (5)

where
| i? |

is less than a number A independent of r. Then

H (/)
-

(27r)4 (r^ + ar^ + tf
+ l e~ l

{i 4- O (r-
1
)}, (6)

H (r
-

/)
=

(2^)* (ry
- ari - ,)-

I+*c^ 1

{i + O (r"
1

)}, (7)

}, (8)
ry/

(/+ ^ log (i
+ -

\ ocr*XT*

=
<
r*'

(M* rx

* Cf. Whittaker and Watson, Modern Analysis, 12-33.
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ft \ 2

(10)
and therefore

1 g I//(O s== tlog(2wr*y)+ + O(ri) f (n)

so that
/ _.a \

i + O(r-*)}. (12)

II. Approximation to g (I)
= rC

l

n-rCm^/nCm when

n, m, r are large

If we consider the expressions
TC

l
x l y r~ l and n- TCm, l

xm- 1

yn-rj-dn-^

where x 4- y = i and ^ is arbitrary, we can choose x so that

the maxima of both expressions occur for the same value of

/, say / . It is necessary that

1 = rx\ m - / =
(n
-

r) x. (i)

Hence x = m/n ; y = (n //*)/#, (2)

7 = rw/w ;
w / = (w r) m/n = (n r) x,

r - lQ
= r(n- m)/n = ry ;

(
- r

)
_

(
m - / )

=
(w
-

r) (n
-

m)\n = (n
-

r)y. (3)

Now put / = / + />. By Lemma I

C, ^^- - {27rr^}-
i exp

-
, (4)

=
(27T (w r) ry}~* exp \

-
~--^ L . (5)1 v ' J * v

\
2 (n r)xy)

VJ/

* I am indebted for this proof to Mr Newman ; it replaces a somewha t

longer one due to Bromwich, Phil. Mag. 38, 1919, 231-235.

jsi 16
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Whence by multiplication

rl
. (6)

But by (4) of Lemma I

)'
} *-^-(n-w)

> (7)mm w __ m n-m+

whence

(8)v ;
_ - -Tr-
(n-r)J

F
\ 2 r (n

-
r) xy

Consider now 2 # (/). (9)
p =

When r (n r) xy/n is large this sum can be replaced ap-

proximately by an integral; when/) increases by i, one term

is added to the sum. Hence

= ( __n~
(
_^rW- 1 r^

\27rxyr (n-r)J J
F

V 2r(-r
~
(

rxyr (n-r
(10)

Put

p = {ar (n r) xy/n}^ g = {zr (n r)m(n m)

Then

(12)
p-O

-terff, (13)

where erf denotes the error function defined by

Then (13) is the probability that / lies between rm/n and

rm/w + p. The probability that it lies between o and r is

unity ; but since i erf is insignificant for moderately
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large positive values of and i + erf insignificant for

moderately large negative values of f, this is equivalent to

i - o VTT ^ - oo

which is true.

III. Evaluation of

S '

rl

We have

which is the coefficient of xr~ l in the binomial expansion
of (i

-
x)~

(l+l)
. Also, similarly,

n~rCm_j is the coefficient

of x(n~r)-(m- l) in the binomial expansion of (i x)-
(m~ l+l)

.

Hence, by multiplying the two expansions, we see that

S TC l

n-rCm_ t
is the coefficient of xr~ l

. ^(n-r)-(m-o in the
r-l

expansion of (i #)-<
m+2)

;
the coefficient, that is, of xn~m .

But this coefficient is

1.2.... -m
Also

rr
r-/ = r!_ r-/ = _H__ /+i

1
n - m /T(r~- l)\n-m (I + i) ! (r

- / - i) ! n - m %

Whence
n _ 7 /J_TWV rrn-rn

,

r__* ^-J__i, S rp n-rp'* ^^ I ^ml ---- ^ ^ Z4-1 v^tnI
r -i

m n m n m r ^i
*+1 m {

= -^- n+1Cm+2 , by the last result

(/+!)(+ 1)1
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